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1 Introduction 

Systemic Functional Linguistics (SFL) as we know it today is the result of a continual 
evolution of theory and description. The theory had its roots in Firth’s teachings in 
linguistics, taken up and developed by Halliday, first in his system/structure 
description of Chinese (1950s), later in his development of Scale & Category 
Grammar (1961), and afterwards in the evolving complexity of SFL. 

Intertwined with this evolution we find also the evolution of computers, and their use 
in relation to SFL. Computational applications of SFL, such as sentence generation 
and analysis, have enabled practitioners to explore just how complete the Systemic 
model of language is: when confronted with real texts, is the theory sufficient to 
provide formal instructions for interpreting those texts; and when confronted with 
meanings, is the theory sufficient for providing formal instructions that motivate 
natural texts corresponding to those meanings. In this way, the computer-using 
linguist (or computational linguists as they are now called), could find where the 
model failed to work, and needed to be changed. They have also found gaps in the 
theory: places where SFL does not tell us enough to allow us to generate a text, or to 
understand one, and thus point to where the theory needs to be extended. 

This chapter summarises the evolution of computational applications which use SFL, 
or help those who use SFL. We look at those applications which use SFL for machine 
translation, parsing, text generation and dialogue systems. We also look at tools which 
help the practitioner: coding tools and system network drawing tools. 

2 Machine Translation 

During the 1940s, the first modern computersi were created. They were extremely 
large, sometimes the size of small buildings. The first computers were programmed 
by setting switches on a panel. Gradually the computers became smaller, less 
expensive, and easier to program. Time on these computers became available for a 
wider range of uses. Some considered that the raw power of these computers could be 
turned to machine translation (MT) between languages. During the 1950s in Britain, 
two projects in this direction were started, one involving Firth’s group in University 
College London, the other involving a group in Cambridge which included Halliday. 

2.1 Firth & Booth 

During 1955, Andrew D. Booth’s group at Birkbeck laboratory, London was funded 
by the Nuffield Foundation to develop “a modest programme ... to render scientific 
French into acceptable English” (Booth 1956). Booth selected French in order to 
“avoid competition with American projects” and also because French was seen as an 
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easy starting point, since English and French word order were supposedly relatively 
similar (Hutchins 1986). 

To develop the grammar and lexicon for the project, Booth contacted J.R. Firth at the 
University of London. Firth gathered a team of those in his department to develop the 
resources, which were a “microglossary” (less than 1000 words) and a “micro-
grammar”. 

The approach of the project was to perform word-for-word translation, followed by 
some basic phrasal re-organisations. A sample output from the system (from Hutchins 
1986) is as follows: 

We demonstrate in this chapter the fundamental theorem of M. 

Poincaré, after having studied the integrals of a system of 

differential equations, considered as functions of initial values 

It seems that the system worked on this limited lexicon, but the machine was too 
limited in storage capacity to enable real testing. 

2.2 Halliday & the CLRU 

In 1956, the Cambridge Language Research Unit (CLRU), of which Halliday was a 
member, received funding from the U.S. National Science Foundation to explore MT. 
The group also included Margaret Masterman (the director), Arthur Frederick Parker-
Rhodes (a mathematician) and Dick Richens (a biologist). The central idea was from 
Richens: to develop an inter-lingua, such that each (European) language would first 
be translated into the inter-lingua, and thence into the target language. According to 
Wilks (1995), the inter-lingua, called NUDE (from ‘naked ideas’), involved semantic 
categories such as FOLK, STUFF, MAN, THING, along with brackets and 
connectives. 

It is not clear how much of the project’s direction came from Halliday, although one 
commentator (Hutchins 1986) attributes some of the research to Halliday, citing 
Halliday (1956). Halliday commented on his involvement: 

“I felt that machine translation had an important political role to play. There were 
lots of cultures around the world where people were beginning to be educated in 
a mother tongue and if you could possibly have a machine to translate a lot of 
text books at least it would help the process.” (Kress et al 1992). 

Given that this project involved working with a hierarchical organisation of semantic 
categories, it seemed likely that Halliday might have been influenced by this project 
in the development of system networks. However, when asked, he said that the idea of 
system networks rather sprang from “taking seriously the paradigmatic project that 
was implicit in the Firthian (and also Helmslevian) interpretation of post-Saussurian 
linguistics.” (personal communication). He was never able to convince the others on 
the project that they should give as much priority to system as to structural 
descriptions. 

While no working MT system arose out of the project, the NUDE project had fairly 
major influence on the field in later years. Hutchins (1986), in summarising the 
history of MT, said that: 

 “In recent years, research in Artificial Intelligence has turned increasingly to the 
areas of investigation which were first examined in depth by the Cambridge 
project ... features of the CLRU conception of semantic message structure have 
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lived on in various guises in both AI and MT research” (Hutchins 1986: section 
5.3). 

2.3 Later Work 

In 1966, a U.S. government report concluded that automatic machine translation was 
not currently feasible. As a consequence, all U.S. government funding of MT stopped, 
and work in MT was greatly reduced even in Europe and the USSR. Research into 
MT only began to pick up again in the 1980s, due to increased linguistic 
sophistication, more precise understandings of the practical niches for which MT 
could provide solutions, and more powerful computers. 

The involvement of SFL in MT remained largely indirect however. In the late 1980s, 
Erich Steiner constructed a model of clause types and participant roles for the German 
component of the large-scale European translation project Eurotra (Steiner et al. 
1988). Steiner also subsequently interacted with the Natural Language group at the 
Information Sciences Institute (ISI) in Los Angeles (home of the Penman project: see 
below) in their first moves towards considering MT (Bateman et al. 1989). In the 
early 1990s, Graham Wilcock investigated the possible advantages of using SFG in 
machine translation, although only part of an MT system was produced (Wilcock 
1993). And, in the mid-1990s, the Natural Language group at ISI then became one of 
the founding members of the large Pangloss MT project. This project was based on 
the idea of an interlingua, as espoused in the NUDE project. This time, the interlingua 
was based on a systemically inspired experiential semantics, the Penman Upper 
Model, that we will return to below. From an interlingua specification of an utterance, 
the Penman generation system was initially used to generate sentences into English, 
although this was later replaced by more statistically-based methods. 

Subsequent SFL applications for MT have been, and continue to be, seriously 
hampered by the difficulties of achieving full-scale Systemic analysis components, to 
which we now turn. 

3 SFL & Text Analysis 

After the death of MT in the Sixties, attention instead turned to syntactic analysis of 
text. Syntactic analysis, or parsing, involves the interpretation of text in terms of the 
syntactic structures described in a grammar. 

3.1 Parker-Rhodes & Yorick Wilks 

The earliest attempt to parse with a Hallidayan grammar was during 1962-3. Parker-
Rhodes, who worked with Halliday on the NUDE project, developed a parser for a 
grammar based on Halliday’s Scale & Category grammar. Directing a crew which 
included Yorick Wilks, subsequently a highly influential figure in computational 
linguistics, he first of all developed “a system of syntax which was Hallidayan, with a 
lattice theory imposed on top to model the inclusion of grammatical types” (Yorick 
Wilks, personal communication). A lexicon was developed, outlining the possible 
governors of each word. Parker-Rhodes developed a method for parsing the grammar, 
which Wilks then programmed on a Hollerith punch card machine. The output of the 
program was a bracketing of the constituency of the input sentences, for example: 

((His second wife) (was(young and (very beautiful)))) 

 ((His eyes) (were blue(like(the morning sky)))) 
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3.2 Winograd 

Terry Winograd, who later became one of the most influential researchers in Artificial 
Intelligence, was the first to use SFL in a parsing system. From the United States, he 
used a Fulbright scholarship to study for a year in Halliday’s department in London, 
attending lectures under Halliday, Hudson and Dixon. While there, he did some 
interesting work on the computer analysis of tonal harmony using the Systemic 
formalism. After this, he returned to the States, taking up his enrolment at MIT. 

Although at MIT, he was not in Chomsky’s department, where his new Systemic 
approach to language would not have been appreciated. Rather, he was in the 
Artificial Intelligence Lab, under one of the originators of AI, Marvin Minsky. 
Minsky and Chomsky were actively hostile to each other, so when Winograd 
proposed using SFG for his doctorate project, there was no complaint. Winograd 
comments: 

“My direct source of inspiration came from the year in London where I studied 
with Halliday. If you look at what Halliday was doing in the context of the 
larger picture of generative grammar, he was trying to adapt his theories, which 
came more from a social perspective, to a generative form.” (Thanning 
Vendelø1 2002: 10-11) 

Winograd developed a system which allowed a human to communicate (by keyboard) 
in restricted English with a virtual ‘robot’ (represented on the computer screen). The 
robot’s universe consisted of a set of blocks of different shapes and colours. The 
human could ask the robot questions about the current state of blocks (‘which block is 
under the brown one?’) or give orders, moving blocks about. The syntactic analyser of 
the system was based on Halliday’s early SFG, centred around system networks for 
clause, group and word. 

The system had very high impact at the time. The focus in the early 1970s was on the 
parsing of problem sentences, or on making syntactic parsers more efficient. 
Winograd, following a more functional line, dealt with the core sentences of the 
language, and focused on making the system work, not proving that it should work in 
theory. Where the current work was focussing on syntax, he made a system which 
analysed input text, interpreted it semantically, decided on the appropriate response to 
the input, and then acted upon it. The system required work in knowledge 
representation (modelling the blocks world) and on problem-solving. Many 
considered the system to have demonstrated that natural language interaction with 
artificial intelligences was possible, if not solved. 

The success of this work spread the name of SFG in the NLP community. However, 
the success of the system as a functioning SFL parser needs to be balanced against 
several properties which subsequent computational work has shown to be 
problematic: 

• System network only used implicitly: although Winograd used a system 
network, “the network itself was not input into the computer. The network is 
not referred to by [the system] but only by the person who is writing the 
grammar” (McCord 1977: 257) 

• Procedurally implemented: syntax and semantics were procedural: directly 
coded into the program rather than being ‘declaratively’ stated. This is an 
instance of a general trend in computational linguistics: where the first work 
in an area is implemented procedurally, later work takes advantage of the 
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procedural model and produces a declarative version. The difference between 
these can be understood by imagining two devices: the first a bread-making 
machine, the second a general purpose cooking machine that takes recipes as 
input. The first has the recipe for bread encoded ‘procedurally’ in the concrete 
operations that it can perform; it may be very good at making bread but will 
not make good lasagna. The second takes an abstract declarative set of 
instructions, the recipe, and follows those instructions to produce bread or 
lasagna or anything else. In the case of computational linguistics, the recipes 
may correspond to grammars for different languages, or for different 
registers, etc. The advantages of the more general purpose approach should be 
clear. 

• Limited function structure: function structure seems to be limited to one layer 
of function structure at each rank. 

• Domain-specific: Winograd’s grammar was tailored to the domain of 
BlocksWorld. It was quite small in coverage (120 features or so), and would 
have been difficult to increase substantially in size. 

3.3 Michael McCord 

Inspired by Winograd’s work, Michael McCord started exploring SFG, soon found 
Dick Hudson’s book, “English Complex Sentences” (Hudson 1971), and started up a 
correspondence with him. He spent the fall of 1977 with Hudson on a sabbatical. 

He developed a modified version of SFG (McCord 1975), for which he then 
implemented a parser (McCord 1977). The main differences from standard SFG were: 

• All systems were binary in nature. 

• Realisation rules were somewhat transformational: the could add, move or delete 
functions. 

In implementing his parser, he made an additional change: the grammar was re-
represented in a form closer to the surface structure of clauses. 

“The structure rule for a base feature like CLAUSE is a single linear list of 
segments. Each segment consists of a slot, and a sequence of conditions and 
actions for filling the slot. ... Each slot is an atomic symbol such as SUBJECT 
or MAINVERB representing a grammatical function of the item that fills the 
slot. ... A structure rule expands a base feature into a single linear list, in overall 
form like a single phrase structure rule.” (McCord 1977: 258) 

Parsing a clause involves simply taking the structure rule for the clause, and testing 
for the presence or absence of each slot in the rule in turn. 

In contrast to Winograd’s system, this system represents the system network 
internally, and it is used to test feature inheritance, etc. The grammar allows for 
conflation, which means multiple layers of function structure can be handled, 
although it is not clear if this is true of the parser as well. 

McCord’s next system was called “Slot Grammar” (McCord 1980), which moved 
further away from its Systemic basis, yet still was partially derivative. Since 1983, 
McCord has been working for IBM, developing Slot Grammars for several European 
languages. These grammars are used within the IBM WebSphere Translation Server, 
reputedly one of the best translation systems available today. 
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3.4 Martin Kay 

Kay started working on language at the CLRU several years after Halliday had left. 
Kay however visited Halliday in London several times in the 1960s, and in the 1970s, 
while Kay was working at Rand Corp (Los Angeles), Halliday visited him there. Kay 
started to work on Systemic Grammar, and this task led him to develop a formalism 
called Functional Unification Grammar (FUG), a forerunner of one the most 
widespread linguistic formalisms used today. He says: 

“FUG was in large measure an attempt to provide a formalization of Systemics 
that would be amenable to computation. In particular, Halliday spoke of 
‘realization rules’ that would effectively translate the choices made in his 
networks into strings, but there was virtually nothing said about what these 
would be like, and I was eager to fill that gap.” (Kay, personal communication) 

While FUG has clear debts to SFG, it differs in substantial ways. Firstly, it does not 
include a separate paradigmatic component: there are no system networks (although 
features are used in the grammar, they are not organised in terms of systems). 

A FUG is then, in a sense, a generalisation over the structures generated by a SFG. A 
Hallidayan grammar uses distinct graphical representations for structural constraints 
in the network and their corresponding occurrences as instances, as shown in figure 1. 
One step Kay took was to choose to work with only one notation for both grammar 
and analyses. His notation follows more closely the organisation of tree diagrams, but 
since such diagrams are difficult to type, he developed the notation shown in figure 2. 

 
 declarative 

 
Subject ^ Finite 
Subject: nominal-group 
Finite: verb 

interrogative 

[clause:declarative] 

Subject 
[nominal-group] 

Finite 
[verb] 

 

Figure 1: Systemics uses distinct representation in  
system networks and structure diagrams 

 
CAT     = CLAUSE 

SUBJECT = [CAT = NOMINAL-GROUP] 

FINITE  = [CAT = VERB] 

MOOD    = DECLARATIVE 

{SUBJECT FINITE} 

  

Figure 2: FUG representation 

The key notion in Kay’s grammar was one of unification: the merging together of 
distinct but compatible functional descriptions. Unification has always been implicit 
in SFG, via the use of simultaneous systems which need to be considered together to 
construct the structure and, to a certain extent, via some aspects of conflation. Kay 
made this notion explicit. 

In the 1980s, Kay developed a parser for FUG (Kay 1985). While Winograd and 
McCord implemented their grammars procedurally, Kay declarativised the grammar 
(represented it in an implementation-independent form) and his parser accessed the 
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grammar as data. The parser was therefore able to process any grammar provided in 
the appropriate form, a clear advantage over previous procedural accounts. 

He also introduced the notion of compilation of the grammar: automatic re-
representation of the grammar in a form more suitable for a particular application. The 
canonical form of the grammar was used for generation, but needed to be represented 
in an alternative form for efficient parsing. 

Kay himself was not happy with the parsing results and abandoned the formalism 
(personal communication). The formalism caught on however and is widely used in 
computational linguistics, usually extended to include something akin to system 
networks (e.g., HPSG, Typed Feature Structures) as we will discuss below. 

3.5 Cummings & Regina 

In the early 1980s, Michael Cummings in Toronto was working on the analysis of Old 
English nominal groups (NGs). Initially hand-drawing analyses on cards, he soon 
realized he needed to computerise the study to properly utilise the data. He recruited a 
programmer, Al Regina, and together they developed a system which allowed them to 
enter the syntactic analyses of the NGs, and ask questions of the database. 

Because it was time-consuming to enter each analysis, they extended the system to 
parse each entered NG. The system did not require the specification of a grammar or 
lexicon, but rather derived such from the existing corpus. Each analysis was stripped 
of the lexemes, and stored away as a possible NG structure. A lexicon was 
constructed by examining the various lexical features that each occurring token was 
assigned. 

This is, we believe, the first instance of TreeBank parsing (e.g., Charniak 1996), a 
method which became popular in the 1990s and is still widely used. One limit of the 
Cummings-Regina approach is that it does not attempt to generalise: the corpus may 
contain “seven red cats” and “very red cats”, but will fail to recognise “seven very red 
cats”, as only full structures are taken into account. Later approaches attempt to derive 
structure rules from the corpus, which capture such generalisations. Also, problems 
would arise moving away from the group to the clause, as clauses offer far more 
variety in their possible forms. 

3.6 Robert Kasper – Legin 

In 1985, Bob Kasper started working at the Information Sciences Institute (ISI) in Los 
Angeles on the Penman generation project (see below). His task was to see if the 
NIGEL grammar, then the largest generation grammar in existence, could also be 
applied to parsing. Because he was more familiar with Kay’s FUG, and FUG had 
already been applied to parsing, he chose to re-represent NIGEL into FUG. 

Faced with overwhelming complexity, Kasper’s system (Kasper 1988) firstly parsed 
each sentence with a small (hand-written) phrase-structure grammar (PSG) 
(containing around 60 rules). Each PS rule also contained information for mapping 
the phrase structure of the rule onto a parallel systemic structure tree (see figure 3). 
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 NG 

NGPS PP 

NGPS 

NGPRE NGHEAD 

DN CLASSIF 

[nominal-group-simplex]  

DEICTIC 
[deictic] 

ACCOMPANIMENT 
[accompanying-process] 

CLASSIF 
[noun] 

THING 

 

Figure 3: Mapping from context-free backbone to Systemic analysis 

Once all possible analyses were produced (using a bottom-up chart parser), each 
alternative Systemic analysis was further enriched using information from the NIGEL 
grammar. This approach to parsing is often referred to as parsing with a “context-free 
backbone”, as the PSG offers a low-detail ‘skeletal’ analysis, fleshed out by the 
functional grammar. 

This was the first attempt to parse with a grammar in the full Hallidayan formalism, 
and of large size. However, the dependence on the PSG grammar lessens the 
importance of the work in the current context. The parser was quite slow, and was 
limited to parsing those structures covered by the PSG. 

Later, with Mick O’Donnell and Richard Whitney, the work was repeated using a 
knowledge representation system, LOOM. They declarativised the (procedurally 
implemented) semantic mapping interface of Penman, thus allowing for an ideational 
layer analysis to be derived for each sentence, although the system only worked for 
very short sentences due to combinatorial complexity. This was, however, the first 
effort to produce a semantic stratum analysis using SFG. 

3.7 Cardiff Approaches 

During the 1990s, there were a series of parsing experiments based around Robin 
Fawcett’s Systemic model. Fawcett had realized very early that the ability to ascribe 
Systemic analyses to texts automatically would be of tremendous significance if it 
could be made to work. In the Hallidayan model, there is system and structure at 
every level of linguistic representation. Thus, we have a system network for the 
grammar, which describes the grammatical structures at that stratum and, equally, for 
those approaches with a semantics, there is a distinct semantic network, which builds 
in turn semantic structures. In the Fawcett model, however, there is one system 
network, called a semantic network. The realisations of features in this network 
directly build syntactic structures. Fawcett thus uses a single network to model what 
the Hallidayan approach models over two strata. 

In Halliday’s grammatical structure, each element is described by a selection 
expression from the network (a set of features), and by the set of functions it fills in 
relation to its parent unit. The Fawcett approach is similar in this regard, but in 
addition, each element of structure is assigned a single syntactic ‘class’ (Cl for clause, 
ngp for nominal-group, etc. These classes are not part of the network). Each element 
gets exactly one class. The function structure and the syntactic classes are considered 
the syntactic structure, while the selection expression is considered the semantics of 
each unit. 
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Formally, i.e., in terms of the computational task that is to be solved in each case, 
what Fawcett calls semantic analysis is equivalent to grammatical analysis in the 
Hallidayan approach – the analysis of a sentence using a system network and its 
realisation rules. 

3.7.1 Corpus-based approaches 

The first efforts at parsing Fawcett-style grammars took a similar approach to 
Cummings & Regina: they ignored the grammar, instead extracting a (non-systemic) 
grammar and lexicon from a parsed corpus. These resources were then used for 
parsing. 

Tim O’Donoghue took a corpus produced using Fawcett & Tucker’s Genesys system 
to generate 100,000 sentences at random (all syntactically correct but with no regard 
to meaning). From this a grammar was extracted: 

“Rather than considering the horizontal slices of the tree – the phrases – we 
consider vertical slices. These vertical slices are called strips, hence the name 
VSG. A strip is a vertical path of nodes in the tree starting at the room and 
ending at a lexical node” (O’Donoghue 1991a: 4) 

A compilation step extracts out of the parse corpus all possible strips. Another phase 
derives a ‘collocation’ network which shows which strips can follow a particular strip. 
This phase also identifies which strips can start and end a sentence. Another 
compilation produces the lexicon, which is a mapping from each word to the set of 
strips that that word can be the terminal of. 

To parse, one simply finds the strips for each lexeme in the sentence. The strips for 
the first word which cannot begin a sentence are eliminated, as are those strips of the 
last word which cannot end a sentence. A valid parse select one and only one strip 
from each of the strip sets. The strips need to be compatible with each other (they 
must define a valid syntactic structure) and collocation rules need to link each strip to 
the next. The parser finds all possible combinations of the strips meeting these 
criteria, and these are output as possible parses. 

The parser was only tested on further sentences generated from the grammar, so it is 
not clear how well the system would work on a real corpus. There are also potential 
problems of combinatorial explosions in the step which looks for possible 
combinations of strips, if a larger corpus is used. 

O’Donoghue (1991b) added a further level of analysis: given a syntactic analysis of a 
sentence, the SFG is used to discover the set of Systemic features (for each unit) 
which would have produced the analysis. 

Clive Souter used a hand-analysed corpus, a 65,000 word corpus of children’s spoken 
English. Like O’Donoghue’s system, Souter’s used horizontal collocation information 
and vertical strips. However, Souter’s vertical strips were limited to three levels of 
structure (vertical trigrams), enough to provide context when determining which 
daughters can attach to which parent units (Souter 1996). 

3.7.2 A Grammar-based approach 

In contrast, Ruvan Weerasinghe used Fawcett’s grammar as the starting point 
(Weerasinghe & Fawcett 1993). He rewrote (by hand) the SFG in a form more 
amenable for parsing. In particular, two types of rules were produced, and used in a 
bottom-up chart parser: 
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• Phrase structure rules: rules stating the potential sequence of functions for 
each basic class of item (clause, nominal-group, etc.). 

• Function potential statements: for each basic class, a statement of the set of 
functional slots that the element could fill (e.g., that a nominal group could 
fill the Subject slot, Complement slot, etc.). Similar statements are provided 
for words as well as basic classes. 

We believe that the production of phrase structure rules for Systemic clause structure 
is only possible when limited grammatical possibilities are considered. Fawcett’s 
grammar was written for generation, and thus only needed to account for a subset of 
possible expressions. In parsing, all possible orderings of elements need to be allowed 
for. For a grammar with real coverage, such simple structure rules are not sufficient. 

Conflation was very limited in the system, thus avoiding the second major cause of 
complexity in Systemic parsing -- functional layering. 

3.8 O’Donnell 

In 1989, Mick O’Donnell experimented with several parsers for small Systemic 
grammars, but found difficulty when scaling up to larger grammars. In 1990 he 
worked at ISI under Bob Kasper, where he learnt about grammar recompilation, use 
of formal logic systems for parsing, and methods for handling complexity. In 1991, he 
joined the EDA Projectii, funded by Fujitsu, with the project goal to parse translated 
computer manuals and critique the discourse structures. He developed a parser which 
worked directly on SFG, using a subset of the Nigel grammar. The parser recompiled 
the SFG into two resources: the set of possible function bundles allowed by the 
grammar (along with the bundles preselections) and a resource detailing which 
functions can follow a particular function (see Matthiessen et al 1991; O’Donnell 
1993; O’Donnell 1995). 

This was the first system which allowed parsing directly from a reasonable scale SFG, 
without need of additional specifications or a phase-structure backbone. However, 
when attempting to handle all of the NIGEL grammar, the system would take hours to 
compile the grammar, making grammar development difficult. As a first step towards 
handling this difficulty, O’Donnell he developed his own SFG, one more suited to 
parsing (using only the Mood layer). This smaller grammar could be precompiled 
quickly, and allowed quicker parsing of sentences. 

In 2001, O’Donnell joined a Belgian Informatics company, where he lead a team to 
develop a Systemic-oriented parser. He had reached the conclusion that dependency 
grammars allowed faster parsing. Together with Joeri Van Der Vloet and Frederik 
Coppens, they developed a wide-coverage grammar & lexicon, based on the Systemic 
formalism (written in terms of a system network). One simplification of this approach 
was that each element connects to another via one function only, avoiding the 
complexity introduced by conflation. Also, ordering was done in terms of slot 
positions relative to the head, rather than the relative positioning rules of standard 
SFG. The system relied heavily on statistics to choose the best parse among those 
produced for a sentence. 

This parser was able to parse previously unseen texts, with 92% of all words 
connected to the correct head-word via the correct relation. 

O’Donnell is currently developing another parser for constituency-style Systemic 
grammars, assuming one function per unit, and using slot-based ordering rules. 
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3.9 Bateman et al. 

John Bateman, interested in the formal properties of SFG, explored the representation 
of SFG in a formally established and well understood representation system: the 
Typed Feature Structures (TFS) system, descended from Kay’s FUG mentioned 
above. Together with Martin Emele, Rémi Zajac and Stefan Momma of Stuttgart 
University they mapped a fragment of the NIGEL grammar and semantics into TFS 
(Bateman et al. 1992). Only those resources needed to parse a handful of variations 
around the clause Kim ate every cookie were included. Within TFS, they could assert 
partial syntactic representation of a sentence, and the system would expand this 
information using the grammar to build all the implied structure. No actual parser was 
implemented for the grammar, but later, they used an HPSG parser to produces a 
skeletal function structure for the sentence, which was then fleshed out by the 
Systemic resources in a way similar to the use of a skeletal phrase structure grammar 
described above (cf. figure 3). 

The experiment was interesting in regards to the bidirectional use of SFG, the re-
expression of SFG into the TFS formalism, and the hybridisation of HSPG syntax 
with SFG semantics. But, as a consequence, the system was not then a true SFG 
parser. Subsequent work exploring a pure SFG representation of large-scale grammars 
took this further, but explored formalisation issues rather than practical analysis; we 
therefore return to this below. 

3.10 Summary 

The main problem of using SFGs for parsing is that they are far more complex than 
post-Chomskian grammars: the grammar is closer to semantics than to form, system 
networks represent large numbers of simultaneous combinations of features, and the 
grammar involves multiple layers of function structure which need to be conflated 
together. 

Some of the approaches avoid parsing with SFG entirely: they parse with a cover 
grammar, using the SFG to flesh out the description, while others ignore the grammar, 
instead using a corpus annotated with the grammar as a starting point. 

Other approaches do use SFG for parsing, but limit the problem in various ways: 
assuming only a single layer of structure, or restricting themselves to a low-coverage 
grammar. Others aim for high coverage, but reduce the depth of information provided 
(e.g., using only Mood analysis). 

We are still waiting for a parser which can parse in terms of a large Hallidayan style 
grammar. Meanwhile, we are getting good results with reduced formalisms, 
producing at least one system which is in commercial use (O’Donnell’s last parser). 

4 SFL & Text Generation 

The other main branch of natural language processing is called natural language 

generation (NLG); this is often talked of as the ‘opposite’ of analysis or parsing, 
although there are many asymmetries between the two, both in terms of approaches 
and methods and in terms of research communities. Simply stated, NLG is the 
computational process of automatically producing sentences in some human language 
on the basis of a specification of communicative intention. A program that perform 
this task is called a sentence generator. From the perspective of SFL this can be 
viewed most usefully in terms of stratification. NLG is a ‘stratification-descending’ 
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process by which specifications, typically given at the computational equivalents of 
field, discourse semantics, or experiential semantics, are ‘passed through’ a 
lexicogrammar in order to produce, fully automatically, corresponding ‘wordings’. 

It is in NLG that some of the most close and productive exchanges between SFL and 
computational linguistics have occurred--generally because, as we shall see, it is the 
generation perspective on linguistic resources that fits most naturally and easily with 
the SFL-focus on systemic potential. In many respects, a systemic network as found 
within a lexicogrammar is a statement of how to construct a sentence or other 
grammatical unit. Following the network through, from left to right, invoking 
realization statements as they are encountered, is a recipe for constructing 
corresponding grammatical units. Thus, despite the fact that the non-computational 
user of systemic theory will tend to think first of analysis, within the computational 
context it is not analysis that the SFL framework has shown itself to be most suited to. 
This result, which has actually only become clear because of the attempts to apply 
SFL theory for both analysis and generation, has some fairly deep consequences for 
theory and for how systemic potential can be best captured. We will return to some of 
these consequences in our discussions below. 

The first attempt to employ a systemic specification for automatic generation was 
Henrici (1965). This took the notions of systemic network (paradigmatic 
organization) and realization statements constraining structure (syntagmatic 
organization), and specified them sufficiently explicitly for a computer programme to 
carry them out. The importance of this part of the exercise--making a specification 
sufficiently explicit as to be computationally executable--cannot be over-emphasized 
and forms the heart of computational linguistics. The degree of explicitness required 
for computational specification is unforgiving; nothing can be left to the charitable 
interpretation of a human analyst. Although this may be less appropriate in areas of 
investigation where we just do not know enough to be precise, or in areas where the 
very applicability of precision is doubted, for tasks such as providing a tight and 
precise account of lexicogrammar such computational precision can be very 
rewarding. If the realization statements that one has written in a systemic network at 
two places in that network, perhaps quite distant but paradigmatically coherent, result 
in incompatibility when selected, then the grammar is wrong: this is not a matter of 
interpretation; most usually it is simply an error on the part of the grammar writer. 
And such errors occur with dramatically increasing frequency once the size of the 
resource being constructed, for example, the lexicogrammar for a language, increases 
to that necessary for detailed description. 

Finding such unwanted incompatibilities and forcing the grammar writer to confront 
and resolve them is then perhaps the most important contribution of pursuing a 
computational instantiation of a linguistic theory. All of these aspects became explicit 
with computational applications of the systemic account for generation. Henrici’s 
approach, although naturally limited in many respects, was the first step in showing 
that the computational application of systemic grammars for generation purposes was 
in principle possible. 

Another significant move towards applying SFL for NLG was Robin Fawcett’s 
(1973) consideration of what would be necessary to make a systemic account of 
grammar sufficiently explicit to drive a computational instantiation. Fawcett’s work 
led subsequently to one of the longest running and extensive computational 
explorations of systemic linguistics for NLG and one of the most extensive 
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computational grammars: the COMMUNAL system developed in Cardiff throughout 
the 90s (Fawcett & Tucker 1992). 

The most influential forerunner of the broader take-up of SFL within NLG occurred 
in the 1980s however. This was the PROTEUS system, written as part of the doctoral 
dissertation of Anthony Davey in Edinburgh in 1974 (published as Davey 1978). Here 
for the first time we find not isolated generation of sentences, but the use of a 
systemic lexicogrammar for the automatic production of full texts. These texts were 
naturally rather simple. They were running commentaries of games of noughts and 
cross (‘tic-tac-toe’) that were also played automatically by the computer. 
Nevertheless, they needed to display awareness of issues of cohesion, appropriate 
pronominalization, clause connectives as well as managing to get the basic grammar 
of the clauses produced correct. Davey’s system was a convincing demonstration that 
it was feasible to produce extended texts automatically on the basis of machine-
internal non-linguistic information; recent NLG systems generally follow in this 
tradition, producing information from database contents, from knowledge bases of 
expert systems, and from user-provided abstract input. 

The role of SFL within NLG changed dramatically with the advent of the Penman text 
generation system, originally designed and conceived by William C. Mann of the 
Information Sciences Institute in Los Angeles. Mann was planning a large-scale NLG 
project, but found in an extensive study of the technology of the time that the tools 
available showed little linguistic sophistication. On the basis of previous 
computational experiences, Mann had been convinced that making a computer 
‘function as an author’ (Mann & Moore 1980) would require detailed and 
linguistically valid models of lexis, grammar, semantics and discourse in order to 
succeed. While this does not sound surprising from the perspective of linguists, such 
an extensive incorporation of independently developed linguistic insights within 
computational models was far rarer within the NLG and dialogue systems that had 
been pursued hitherto and Mann’s insight led directly to a close interaction between 
systemic theory and computation. Partly on the basis of results such as Davey’s, 
Mann decided that what his project required was a computational instantiation of 
Michael Halliday’s systemic-functional grammar as the ‘front-end’ of a larger, 
general-purpose NLG system. This system, Penman, was intended to be a register-
non-specific, broad-coverage generation system, capable of producing texts in natural 
English for as broad a range of domains as required. To achieve this aim, he involved 
Halliday, and a fresh graduate student at UCLA working on a systemic interpretation 
of tense in English, Christian Matthiessen. Together they started on the computational 
specification and implementation of the extant fragments of English grammar within 
the systemic-functional framework that Halliday had been working on over the 
previous 15 years. The result of these efforts was the Nigel grammar of English, a 
fully explicit computational systemic-functional grammar for sentence generation 
that, by the late 1980s, had become the most extensive such computational grammar 
in any framework (Mann & Matthiessen 1985; Matthiessen 1985). Even today, there 
are few grammars with comparable coverage and the Nigel grammar continues to be 
used and developed; many have contributed to the grammatical descriptions it 
contains. 

The approach to theory adopted within the Penman project adopts stratification as a 
strong organizing force. The component that is most familiar to systemicists is the 
grammar. This is the main hub, or engine, of the entire generation system. All of 
grammar is modelled as a single network, the first system of choice being the RANK 
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system. Further subnetworks then specify the grammatical possibilities for each rank, 
initially: clauses, groups and phrases. The Nigel grammar of English, written in the 
style defined by Penman, contains around 700 grammatical systems and 1500 
grammatical features. 

While a resource the size of Nigel is a substantial linguistic achievement, it still 
requires further components to be of use for automatic NLG. Indeed, the problem at 
hand is a general one facing all uses of systemic-functional resources for generating 
texts and sentences and several different systems have approached it in varying ways. 
In order to make use of a computationally specified systemic network representing the 
functional potential of a language, it is also necessary to motivate the actual choices 

of grammatical features that are to be made within concrete texts. Since a simple 
clause would generally involve 60-80 ‘choices’ at clause-rank alone, this cannot be 
done sensibly ‘by hand’. It is not enough for a sentence generator to specify that the 
language offers a minimal functional alternative between, for example, indicative 
(simple statements) and imperative clauses (simple orders), which in turn bring 
specific constraints to bear on structure; it is also necessary to specify the precise 
conditions under which indicative must be chosen over imperative, or vice versa. The 
functional motivation and orientation commonly assumed to underlie the system 
network organization must therefore also be spelled out sufficiently explicitly as to be 
able to take on the task of guiding feature selection. This turns out to be much more 
than merely a ‘computational overhead’ brought out by using the theory for a 
computational purpose: it in fact provides a natural lead on to consider discourse 
semantics and its formalization, because without this the grammar cannot be used. 

The task of driving grammatical feature selections has been explored in computational 
implementations of SFGs in four main ways: 

• by means of the chooser and inquiry semantics developed within the Penman 
text generation system (Mann 1985), 

• by the register-driven semantics developed within the SLANG generation 
system (Patten 1988), 

• by probabilistic weightings of feature selections within the COMMUNAL 
system (Fawcett & Tucker 1990), 

• and by means of constraint relations as explored within several more 
experimental approaches to generation (Bateman et al. 1992; O’Donnell 
1994). 

Of these, the approach to ‘inter-stratal’ relationships pursued within the Penman 
system was the first extensive experiment and is, accordingly, probably the least 
systemically oriented, although it does bring certain benefits of its own to which we 
will return in a moment. Here again we have an example of how computational 
instantiation can drive linguistic theory development: the precise mechanisms by 
which strata are to interact have primarily been described abstractly; the 
computational instantiation allows us to explore just to what extent these proposals 
are adequate. Most traditionally in SFL, features at one linguistic stratum have been 
said to ‘preselect’ (directional metaphor) or ‘meta-redound with’ (non-directional 
metaphor) features at less abstract strata. This is the model explored by Patten: 
selections from a register network are aligned with selections from the 
lexicogrammar. This appears effective only for restricted cases; to obtain sufficient 
constraint in the lexicogrammar, the registerial features needed to be extended in 
delicacy to such an extent that it almost appeared to duplicate the information 
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required by the lexicogrammar. It turns out not to be straightforward to maintain the 
sense of lexicogrammar serving as a meaning potential within this model of inter-
stratal interaction alone; this may have been due an inbuilt directionality in Patten’s 
computational implementation. The approach in Fawcett and Tucker’s model also 
attempts to embody certain traditional SFL concerns—in their case the treatment of a 
System network as a probabilistic system; here again there turn out to be 
complications that render the inter-stratal ‘control’ of a lexicogrammar difficult. 

The chooser and inquiry framework, in contrast to these, was an explicit response to 
the computational requirement that the overall generation system be modular and re-
usable across different contexts and across different computational systems, different 
knowledge representation languages, and different text planning components. This 
was achieved by associating a small ‘choice expert’, or chooser, with each 
grammatical system in the system network. A chooser breaks down the choice among 
the grammatical features of its associated system into one or more semantic questions, 
called inquiries. Inquiries take parameters that, typically, refer to aspects of the 
meaning, concepts, etc. that need to be expressed. It is the responsibility of these 
inquiries to obtain the information relevant for the grammatical decision. As far as the 
grammar and choosers are concerned, therefore, the inquiries represent semantically 
aware oracles which can be relied on to motivate grammatical alternations 
appropriately for the current communicative goals being pursued without themselves 
knowing anything about grammatical organisation. The chooser and inquiry approach 
has proved itself useful not only for modularizing the generation process, but also for 
providing a bridge between more informal, functional-descriptive approaches to 
linguistic phenomena of the kind often found in text linguistics and more formal 
approaches that are the goal of computational instantiation. This is important both for 
opening up a dialogue between computational and non-computational (functional) 
linguistics and for allowing sentence generation to proceed even in areas where our 
understanding of the mechanisms involved are still too incomplete to admit of 
detailed formalizations. In working out just how some particular semantic ‘oracle’ is 
to work out its answer, one is naturally led to consider all relevant linguistic research 
that can bear on the issue. The place where this has had clearest consequences has 
been in the provision of a detailed experiential semantics that takes on the task of 
answering all oracle questions arising within the experiential metafunction. This 
experiential semantics, originally called the Upper Model and recently developed 
considerably further by Halliday & Matthiessen (1999), is now at the centre of several 
explorations of linguistic semantics. Now that this exists, researchers can return to 
explore the precise nature of interstratal relationships more effectively. 

The Penman system has served as the foundation for many subsequent investigations 
of systemic theory and its applications in computational contexts. In order to provide 
higher-level sources of control, the approach to discourse representation called 
Rhetorical Structure Theory (RST) was developed by Mann, Sandra Thompson and 
Matthiessen (Mann & Thompson 1988) and this later became an established 
mechanism for automatic text planning within NLG generally (Hovy 1993); a critical 
comparison of RST and Conjunctive Relations has been given by Martin (1992). 

Several subsequent NLG systems also took the Penman system as their 
implementational starting point: i.e., the grammar of Nigel, or the code of the Penman 
system, or both were built on in order to provide additional functionalities. 

For example, the original Penman system separated out grammar and lexicon as is 
common in natural language systems: the lexicon is then a separate list of words with 
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lexical, morphological and grammatical information attached. Marilyn Cross, in her 
1992 dissertation from Macquarie, investigated to what extent a systemicized 
lexicogrammar would be feasible within the same framework (Cross 1992). Her 
system produced texts concerning the water cycle and, although successful as a 
prototype system, also demonstrated that the sheer descriptive work required by an 
integrated lexicogrammar in the style pioneered by Hasan (1987) is a severe 
computational challenge as well. The pursuance of lexicogrammar to the delicacy 
required for lexis is also a main orienting feature of the computational grammars of 
the COMMUNAL project (Tucker 1996, 1998). There remain many important 
theoretical issues to be resolved here, which the explicitness required of a 
computational account does not allow us to shirk. The combination of highly delicate 
lexical systems with inter-stratal control is a particularly difficult problem. 

The Penman system was also substantially extended and modified to incorporate the 
results of discussions originally involving Halliday, Matthiessen, Bateman, Licheng 
Zeng and Keizo Nanri (Bateman et al. 1991) concerning the phenomenon of 
multilinguality. From the early 1990s on, multilinguality in linguistic description 
became an important issues in many approaches to NLG and many systems now 
attempt multilingual natural language generation (MLG). Here the functional 
orientation to language description promised a highly effective approach to 
constructing computational lexicogrammars and semantics for a broad range of 
languages. After some individual specifications for other languages expressed within 
the broad Nigel tradition using Penman, particularly German within the KOMET 
project in Darmstadt (Teich 1999) and German, French and Russian within the 
TechDoc project in Ulm (Rösner & Stede 1994), a general view of multilingual 
systemic networks and of more or less congruent perspectives induced by language 
varieties was added as a basic component of the definition format for system 
networks. The resulting system, KPML (Komet-Penman Multi-Lingual) (Bateman 
1997), has continued to grow and is now one of the standard large-scale generation 
systems available for general use, including substantial computational grammars for 
Dutch, Chinese, Russian, Czech, Bulgarian, Spanish, as well as several smaller 
fragments. With large-scale resources, issues of maintenance and usability also 
become increasingly central. There have also been experiments and developments that 
have been pursued independently of the Penman system, although often drawing on 
its experience. Most significant here is O’Donnell’s WAG system (O’Donnell 1996), 
which drew on advances in formalization to allow not only the analysis that we saw in 
the previous section but also generation similar to that performed by Penman. The 
WAG system was subsequently employed in a number of generation projects, such as 
the ILEX project at Edinburgh which relies on systemically-driven generation for the 
dynamic construction of webpages concerning museum exhibits, and supported the 
development of compatible computational grammars for further languages, most 
particularly Greek. There have also been moves towards extending generation to 
include multimodal presentations, supported by some exploratory systems as Zeng’s 
MULTEX system (Matthiessen et al. 1995). 

One further NLG system, that was developed in parallel and independently to the 
Penman system but which has also played a dominating role in many branches of 
NLG research and development, is Michael Elhadad’s FUF (Functional Unification 
Formalism) (Elhadad & Robin 1996). FUF is an extension of Kay’s FUG that we saw 
above specially tailored for generation. FUF is relevant to our discussion here because 
it also provides a very large generation grammar for English that is related to SFL, 
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and particularly to aspects of Fawcett’s approach to transitivity. The development of 
this grammar has followed quite a different path, however, and integrates within it 
significant aspects of other linguistic theories, such as HPSG. The full impact of such 
combinations of grammatical approaches remains to be evaluated, although it can 
already be seen that the FUF treatment of English is very extensive. 

In summary, we can see that both the research field of NLG and the techniques for 
information presentation that it provides are nowadays finding ever more possibilities 
of application. Established examples include the generation of weather reports from 
meteorological data and the generation of letters responding to customer queries. 
Potential applications now include for instance: the automatic production of technical 
documentation, of instructional texts, of patent claims, of computer-supported 
cooperative work, of patient health information and education, of medical reports and 
in natural language interfaces to databases and information systems. Systemic-
functionally based generation has established a niche for itself within NLG, but its 
continued influence and development there will depend on several factors. There are 
many rival technologies and frameworks and it is no longer the case, as it was when 
the Penman system began, that these rivals are linguistically naive or computationally 
simple. 

The main problems facing the adoption of systemically-based generation systems are 
similar to those facing NLG systems in general--there is a question of what additional 
functionality can we provide to counterbalance the quite substantial costs of 
development. Producing and maintaining a large-scale grammar of a language is an 
expensive and time-consuming activity. There is much discussion of whether it is not 
easier to have simpler, more ad hoc solutions to tasks--after all, if the user does not 
see a difference between a sophisticated and linguistically-motivated computational 
system and a few well-placed print statements of the form “print ‘Your account has 
expired.’”, there will be few willing to provide the funds for further linguistic 
research. NLG is at its best when the texts produced must reflect complex and 
changing relationships that require more of the language produced than a simple print 
statements can provide. Here, then, we may still found computational applications of 
systemic theory where much can be gained: particularly in the areas of register-
controlled language generation, varying texts according to the tenor relationships 
involved (expert-novice, patient-doctor, customer-client, etc.). Each of these areas 
will require developments both in the computational modelling and in the state of the 
linguistic theory modelled. 

Perhaps here we will find in the near future a similarly beneficial synergy as already 
found within the strata of lexicogrammar and semantics. Although, it must be said, we 
still have far too few systemically-trained linguists who could take up the 
computational challenge and without them, other solutions will be found. 

For the development of SFL, we have seen that computational generation systems 
radically improve our abilities to test out large-scale grammar fragments to see if they 
are internally consistent and describe the linguistic structures that they were intended 
to. Much has been learnt about precisely what kinds of realizational constraint are 
necessary for constructing systemic grammars and their limitations. More detailed 
accounts of inter-stratal relationships and the interplay between information 
presentation in mutually supportive but distinct modalities are just beginning to come 
into play. There too we can expect a rich continued interaction between theory and 
computational application. 
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5 Dialogue Systems 

A further context for interactions between SFL and natural language processing by 
computer is that of dialogue systems. Dialogue systems are computational 
components that engage a human interlocutor in dialogue in order to achieve some 
task. There are already some spoken-language systems in everyday use--for example, 
automatic train or bus timetable services--but these are generally characterised by 
rather weak interactional possibilities. Dialogue system research and development 
within computational linguistics seeks to construct systems whose interactional 
abilities approach that of human conversation far more closely, and this naturally 
provides important further potential for SFL, engaging with its accounts of prosody, 
discourse semantics and exchange structure in addition to the bias towards primarily 
lexicogrammatical accounts that we have seen so far. 

In one of the earliest direct applications of SFL in this area, Telecom Australia and a 
group at the University of Sydney started a research project in 1991 to develop a 
telephonic dialogue system: a system which would allow human callers to speak to a 
computer ‘operator’ to obtain information. For the dialogue component, the dynamic 
model of exchange proposed in O’Donnell (1990) was adopted, and an 
implementation put together by Telecom. This model adapted the Berry model of 
exchange, along with elements of Martin’s model. It consists of two components: a 
network of exchange states (the ‘context’ in the current exchange, e.g., proposition-

completed-but-not-supported), and a set of behavioural (move) options for each 
participant. The behavioural options are conditioned by the exchange states, and the 
enactment of a move causes a change in the exchange states. 

A second model (cf. O’Donnell & Sefton 1995) described the potential generic tasks 
that need to be performed in an information-seeking dialogue (e.g., Greet, State-

Information-needed, etc.), and a network similar to the exchange state network 
conditioned these options. 

The project also produced reports detailing how the systemic model of exchange 
could be mapped down into grammar, and then to speech. However, none of this was 
implemented. Telecom used a phrase-structure grammar for syntactic analysis and 
generation. Due to the 1992 recession, the project was terminated before a full 
prototype could be implemented 

Another project, this time involving dialogue capabilities in German, was later 
undertaken in cooperation between the KOMET generation group in Darmstadt and 
the Technical University of Budapest. The goal of this project was to explore 
situationally and interactionally appropriate intonational control for German utterance 
generation (Teich et al. 1997). Again, a dialogue model based on state-transitions was 
employed so that the generation component always knew both where it was in an 
exchange and what particular questions were at issue. The natural language 
component focused on the generation task while another group from Darmstadt 
developed a graphically based interface for an information retrieval system. The input 
to the dialogue component was then situated mouse-clicks and typed text, while the 
output was natural spoken German with intonational contours based on Pheby’s 
(1969) adaption for German of Halliday’s account of English prosody. Adding 
intonational resources to a computational descriptions emphasises some difficult 
theoretical issues. For example, just how the potential non-congruence of information 
unit and clause is to be handled technically remains an unsolved question. The fine 
alignment of the prosodic contour with the syntactic and lexical material is also 



 

19 

problematic. Speech synthesis presents a very useful challenge for developing such 
models further because the results of a faulty model can generally be heard all too 
clearly. More recently, there has also been work that attempts to reconcile, or at least 
relate, the approach to SFL approach to intonation with the tone-based accounts that 
are prominent in non-systemic computational work (Teich et al. 2000); such work is 
very important for extending the breadth of interactions in the field. 

One further project is currently developing a dialogue system for Japanese interaction 
(Kobayashi et al. 2002; Ito et al. 2004). This system, based at the Japanese Brain 
Institute RIKEN under Michio Sugeno, draws extensively on the Systemic interaction 
models being developed at Macquarie University. The essential mechanism is that 
features selected from network descriptions of context and the interactional situation 
preselect lexicogrammatical features for guiding the generation of linguistic 
utterances. Similarly, particular syntactic fragments that are recognised in a user’s 
utterances trigger the selection of interactional and context features. There remain 
many difficult issues here that are beyond the scope of the present chapter; in 
particular, it is unclear at this time both just how well the dynamic development of the 
interaction will be modelled and how effective the analysis will prove to be. Dialogue 
systems are a hard test for any linguistic theory: the respective problems of analysis 
and generation are compounded and several further areas are required. Moreover, the 
resulting systems need to function with real, and often surprisingly varied, user input 
and in something approaching ‘real time’. And, as we shall see in the section 
following, there are some reasons to doubt whether Systemic accounts in their present 
form can provide all that is necessary here. This is a clear indication that further, 
closer exchanges between Systemic theory and computation may be highly beneficial. 

6 Representation and formalisms 

Whereas the previous sections of this chapter have described the computational 
contexts of use that SFL has found, there is a further significant area of interaction 
between SFL and computation that cannot be so immediately tied to particular tasks. 
Earlier approaches to artificial intelligence and natural language processing were 
often content if they could construct a computer program that appeared to perform as 
required; this also applies to most of the computational instantiations of SFL that we 
have seen so far. However, as computational linguistics has matured, it has became 
clear that one should also consider the abstract computational properties both of the 
representations that are employed for linguistic information and of the tasks 
undertaken. 

This involves the construction of formalisms that are used to represent any linguistic 
information required. A formalism has a specified formal semantics that states 
precisely both how expressions in the formalism are to be interpreted and how 
consequences can be drawn on the basis of those expressions. Such consequences are 
themselves generally stated in terms of computable inferences, i.e., algorithms or 
computer programs, that take expressions in the formalism as input and produce 
further expressions in the formalism as output. This degree of precision brings many 
benefits; for example, it becomes possible to demonstrate that a particular task will 
always be achievable (or not!) regardless of the particular input faced. This is then a 
significant step beyond writing a program that appears to work for the inputs that one 
has tried so far--one can be sure of the behaviour of the program for any input. 
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This is also important linguistically; applying appropriate formalisations of, for 
example, Systemic networks means that we can demonstrate that a network is 
coherent and that the results of combining particular sets of realization statements 
entailed by a selection expression (path through the network) is guaranteed to result in 
a syntagmatic expression. The effort involved in constructing a full formalization of a 
linguistic account can often reveal gaps or places in the conceptualization of the 
linguistic representation that were not previously clear. One of the earliest examples 
of the importance of this in linguistics was the demonstration of Peters and Ritchie 
(1993) that, regardless of how it was expressed, adopting a transformational grammar 
of the original Chomskian type would commit the linguist to accepting an 
unacceptably high degree of computational complexity. The very nature of the 
formalism and theory had inherent properties that determine how it can perform for 
particular tasks: indeed, certain consequences of linguistic statement made within the 
theory were shown to require an arbitrarily long time to compute. 

It is quite important to understand what this means when considering computational 
models. The ‘arbitrarily long time’ does not refer to the kind of performance issues 
that might be addressed by getting a faster computer; high computational complexity 
refers to performance that deteriorates at a rate that radically outruns any increase in 
processing time. Thus, if your formalism and the consequences that it is intended to 
support run foul of such higher degrees of computational complexity, then this is a 
serious matter: the theory is then ‘too powerful’ to stand as a model of the behaviour 
modelled since there is no possibility of defining algorithms or building processors 
that can carry out that intended theory. The issues are rather more subtle than can be 
presented here; indications of computational complexity can in fact be employed 
constructively--for example, by dividing problems up into subcomponents so that the 
real sources of complexity can be isolated and perhaps resolved in other ways. But the 
main point of the discussion is simple: relating linguistic representations to 
computational formalisms can reveal significant information about the inherent 
‘computability’ (and this includes ‘computability’ by processors such as our brains) of 
those linguistic representations and theories constructed in their terms. 

For SFL, too, this is a significant issue. It turns out that a straightforward rendering of 
Hallidayan Systemic grammar of the kind expressed in the Nigel grammar (see above) 
suffers exactly from these higher levels of computational complexity. This cannot be 
changed by rewriting the grammar in clever ways; the form of the grammar itself 
already invokes a high degree of computational complexity. This is the underlying 
reason why all of the attempts to produce automatic analysis components for a 
Systemic grammar, as we described above, have needed to fall back on various kinds 
of ‘simplifications’. It seems that a Systemic grammar written solely within the 
representational possibilities provided by the Nigel grammar cannot support fully 
general automatic analysis. 

This inherent complexity of Systemic representations has been known for some time 
and a number of researchers have attempted to define restricted versions of the 
‘Systemic formalism’ possessing more attractive computational properties. This 
involves first understanding in detail what the essential descriptive properties of a 
Systemic grammar are and investigating whether aspects of this can be left out, or cut 
down, so that what is left is still useful while not being computationally as powerful. 
Success here would have had immediate practical applications. For example, if a 
restricted version of a Systemic formalism were found that still allowed Systemic 
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linguists to write the grammars they want to, then such grammars would be directly 
applicable to automatic analysis. Unfortunately, this search does not look hopeful. 

Most of the early explicit attempts to formalize, i.e., to provide a formalism for, 
Systemic grammars focused on their paradigmatic organization. It was correctly seen 
as essential that a proper formal representation of a Systemic grammar should allow 
delicacy-related inferences to be drawn: that is, it should be possible from any feature 
in the network to infer automatically just what other features are necessarily entailed, 
necessarily rejected, and which were still potentially compatible. For a simple 
taxonomic classification network, this is not a difficult task; but for a Systemic 
network, which allows complex entry conditions and simultaneous systems, it is a 
major source of computational complexity. This was described, for example, by 
Patten & Ritchie (1987) using a logic representation and by Mellish using Kay’s 
notion of unification (see above) (Mellish 1988). Subsequently, Brew (1990, 1991) 
attempted to reduce the computational complexity by restricting the kinds of networks 
that can be written. This succeeded in reducing complexity but at the same time 
appeared to reject precisely the kind of network connectivity that one finds most often 
in detailed Systemic descriptions. 

We have already noted in Section 3 above on analysis how Kay’s Functional 
Unification Grammar from 1985 can be seen as an approach to formalising a 
Systemic syntagmatic structure. As this formalism became more widely used in 
computational linguistics and was applied to broader bodies of linguistic description, 
it became clear that the use of the FUG-expressions could be improved by organising 
them into inheritance hierarchies similar in form to Systemic networks. The resulting 
family of formalisms were called Typed Feature Structures because each FUG-
expression was allocated to a type and these types were organised into a special form 
of inheritance hierarchy, corresponding to a mathematical structure called a type 

lattice. In many respects this provides the most natural formalisation of a Hallidayan-
style Systemic grammar and several variants along these lines have been proposed; 
the earliest, which we described above, also served as experiments in parsing and 
analysis using Systemic grammar. Within these approaches, the ‘types’ naturally 
correspond to grammatical features in a Systemic network and the functional 
unification structures (see Figure 2) correspond to the syntagmatic information 
expressed in realization statements. 

Such representations are completely independent of their use and so also capture well 
the ‘non-directional’ aspect of a Hallidayan Systemic grammar. The formalism can 
support inferences from less abstract strata to higher, i.e., from lexicogrammar to 
semantics for interpretations, and from higher strata to lower, i.e., from semantic to 
lexicogrammar for generation. But this power has a high cost--namely, the 
computational complexity alluded to above. In the mid-1990s, in the last large-scale 
work to be carried out in this area, Renate Henschel examined the major tools for 
using typed feature structures that were available and explored how each of them 
fared when confronted with a typed feature representation of the full Nigel grammar 
of English. The results, reported by Henschel (1994, 1997), showed that only one 
system at that time could even load the entire grammar and that inferences drawn on 
the basis of that grammar were prohibitively slow. There are now very much more 
efficient and robust tools for using large-scale typed feature structures available. 
Although these have been developed primarily for the rather differently organised 
grammars of HPSG (Copestake 2002), it is perhaps time again to explore to what 
extent these might also support Systemic grammars. 
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7 Systemic Coding Tools 

The previous sections have explored computer systems which apply SFL to some 
task, such as text generation or analysis. This section and the next will look at tools 
which help systemicists do their work. This section will describe tools which enable 
the linguist to hand-analyse (or ‘code’) a text. 

7.1 Systemic Coder (O’Donnell) 

During the EDA project (1992, see section 3.8 above), the researchers required a 
parsed corpus of computer manuals in order to judge which parts of the grammar were 
most utilised in the manuals. To this end, a tool was developed which allowed a 
linguist to step through a network, choosing a feature at each step, that for the current 
text segment. 

Since then, the tool has been continually under development, oriented more towards 
helping linguists perform statistical studies of text. Watching users utilise the tool, the 
author has seen where they have trouble, and has refined the tool. Currently, users 
report it is easy to use yet powerful. 

The current version includes a graphically displayed system network representing the 
coding categories, a screen displaying the text, which is also where the user indicates 
the segment boundaries (e.g., clause, group, etc.). Another interface allows limited 
corpus search: retrieving all segments which contain a given feature, or logical 
combination of features. A fourth interface is used for statistical analyses of the 
corpus, such as contrasting two subsections of the corpus, or deriving descriptive 
statistics. 

The coder automates some processes for the user. Firstly, segmentation of the text 
into sentences or paragraphs is automatic (the user needs to add in segment 
boundaries at other levels). An experimental version even does the coding for the 
user: given a corpus of already-coded segments, the programme uses machine 
learning techniques to predict which coding choices are appropriate for any new 
segment. Reliabity varies between 50% and 80%, which is why the auto-coder is still 
experimental. 

The Coder has two main limitations. Firstly, only one level of analysis can be 
performed within a single file, e.g., one cannot code segments at clause level, and also 
code the groups within the clauses. For that, a copy of the text needs to be taken, and 
a separate coding file made. This makes it difficult to explore relations between ranks, 
e.g., what types of groups function as Subject in certain clause types. Secondly, the 
tool does not properly handle embedded segments, e.g., to code both clauses in “He 
had, I think, two options”. 

He is currently working on a new tool which fixes both these problems. Also, the 
Coder was originally designed to deal with single text files, but more and more, it has 
been necessary to deal with a corpus of text files, each coded according to the same 
scheme. To this end, the ability has been added to the Coder to load a set of coding 
files at the same time, and do corpus search and statistics as if they were one 
document. However, this is not yet an optimal solution. In the new tool, the basic 
assumption is that the user is working on a document set, a ‘project’, making the 
performance of large studies more intuitive. 
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7.2 Functional Grammar Processor (Webster) 

In 1994, Jonathan Webster announced his Functional Grammar Processor (FGP), a 
tool for functionally analysing clauses in terms of either Transitivity, Mood or Theme 
structures, It was integrated into a word-processing package. The user opened up a 
text in the package. 

“The user then highlights the clause to be analyzed and selects from the FPG 
pop-up menu to do either Theme-Rheme, Mood-Residue or Transitivity 
analysis ... The FG Processor ... next appears on the screen. The user enters 
his/her analysis into the appropriate fields.” (Webster 1994: 183). 

An online help system was available to help an unsure user: for instance, if not sure 
which sub-type of relational to code the verb, the help menu glossed the options. 

FGP only allowed the user to analyse within the defined parameters of the system, 
while the Systemic Coder allowed the user to create their own schemes. Also, FGP is 
limited to analysing clauses. However, it does allow embedded clauses to be analysed 
quite easily. 

7.3 SysFan (Wu, Matthiessen) 

SysFan was developed by Canzhong Wu, at Macquarie University, under the 
direction of Christian Matthiessen, in the late 1990s. It is closer to Webster’s tool than 
the Systemic Coder, in that it codes with pre-loaded model of language, and the usual 
user just analyses text according to that model (experts can in fact change the model 
though). 

Like the Coder, the tool starts off with a segmentation interface, where the user 
segments their text into sentences. The user can then open each sentence in another 
interface, where they further divide the sentence into component clauses, and can 
assign clause complex structure to these clauses (both structurally, as in relations of α, 
β, 1, 2, 3, etc., and also paradigmatically in terms of the features, e.g., 
hypotactic:projection:idea. The tool includes a nice innovation in that it allows the 
user to assign features simply by clicking on the leaves of a graphically drawn system 
network. 

The tool then allows each clause to be analysed into Transitivity, Mood and Theme 
structures (both structurally and paradigmatically). Again, the use can select the 
features directly off a system network. SysFan allows the user to view various profiles 
over the text, such as what types of processes make up the text, and which participant 
types they use. 

The tool appears to be excellent as a means of analysing text according to the loaded 
model. The main constraint is that it is only available for Macintoshes. 

7.4 ‘Systemics’ (O’Halloran & Judd) 

Another recently developed coding tool is ‘Systemics’ designed and implemented by 
Kay O’Halloran and Kevin Judd (O’Halloran 2003). This system is unique among 
Systemic computational tools in that it attempts to provide a graphically based 
annotation interface for several quite distinct kinds of linguistic information, each 
traditionally with its own style of graphical presentation. Codings are possible for 
grammatical structures, interclausal logical structure in terms of elaboration, 
enhancement, extension and projection, dialogic structure in terms of Berry’s 
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exchange structure, Martin’s conjunctive relations, and lexical cohesive chains as 
developed by Hasan and Martin. Each is shown in the appropriate graphical form, and 
this is also directly editable. 

In addition to this, all linguistic resources are maintained as Systemic networks and 
their content is also directly editable; thus, while the system comes with a substantial 
grammar for English pre-loaded, it is possible to edit this further for one’s own 
purposes. The pre-loaded grammar is also unique in that it comes with a description 
for each of the choices and grammatical functions that are included, plus references to 
further reading. 

Somewhat non-traditional is the display metaphor selected for the linguistic resources; 
these resemble the file explorers of modern operating systems such as Windows, 
where one can open and close folders, following these down to greater or lesser 
depths. There is no graphical network display. All the linguistic information is 
expressed in this form, regardless of whether it is paradigmatic or syntagmatic. 
Whether this is simpler to follow and use than the traditional graphical displays with 
its separation of paradigmatic (network) and syntagmatic (realization statements) 
information is still untested. 

Finally, ‘Systemics’ is the first tool for Systemic linguists that it is not free. Funding 
to develop the software was made available from the University of Singapore Press, 
under the condition that the software would only be available under license. The 
current single-user licence fee is around S$100. Although potentially a very good tool 
for students, it is unclear whether the market is already sufficiently strong for this 
overhead. 

7.5 KPML-based tools (Bateman) 

Whereas the other tools described in this section are essentially task-oriented, that is 
they try and provide tools for particular tasks that it is known are useful for the 
working Systemic linguist, the tools developed on the basis of the KPML generation 
system (see above), are more exploratory. Taking particularly the suggestions for new 
styles of linguistic grammars made by Matthiessen & Nesbitt (1996), the aim is to 
support the linguist by providing differing views of both linguistic resources and 
instances, i.e., texts, combining and moving between perspectives. Many of these 
perspectives requires that the tool has a rather complete ‘understanding’ of the 
linguistic resources that it contains. For example, it is essential to know the 
consequences of the system network, that some features can occur together and entail 
others, whereas other features might be mutually exclusive--this prevents potentially 
inaccurate codings. Whereas such requirements are quite strong when seen from the 
perspective of the tool builder designing a tool afresh, they are already provided by a 
full text generation system such as KPML or Penman. If the text generation system 
did not have this information available to it, it would not be able to follow the 
instructions provided by a specification of the grammatical potential to produce 
instantiated syntagmatic structures. The KPML tools, including graphers, grammar 
documentator, example manager, and coder, are all based on the simple strategy of 
making information visible that is already maintained internally within the generation 
system. This makes it quite simple to provide a host of sophisticated views, such as 
for example, highlighting all examples from a set of sentences where some specified 
pair of grammatical constituents (functions) are conflated in the context of some 
particular combination of paradigmatic features, profiling particular selections of 
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features or participant roles, or overviewing the grammatical functions and the 
realization statements operating over them for some selected functional region of a 
grammar network, and many more. The interesting questions then revolve more 
around finding out just what views are useful for a linguist or student or casual 
browser and which are not. 

 

The more that linguists are exposed to these kinds of tools, the more we can expect 
usefully tailored functionalities to be provided. But the first step here will be a 
willingness and curiosity on the part of linguists to see what the computational tools 
that are being explored can offer. 

8 Presentation 

As with other applications, tools for drawing and editing system networks have been 
evolving over time. Here also, we see a movement from tools which required 
computational skill, towards higher usability by linguists. 

During the mid-1980s, Michael Cummings in Toronto developed a tool called 
SYSPRO (Cummings 1987), which allowed the user to enter system networks using a 
command line interface, and then display the network as a whole, printed using fixed-
width characters, for texts and brackets. 

At ISI, home of the Penman project, Gabriel Robins programmed a grapher for 
drawing inheritance networks, although in a very non-systemic form. This grapher 
was used within Penman. 

Based on his algorithms, Mick O’Donnell developed a grapher which drew more 
Systemic diagrams (1990), which was used for displaying grammars within his WAG 
system. However, the network needed to be edited in a text editor. 

Kumano et al. (1994) also developed a grapher for Systemic grammar, and 
incorporated into it graphical means for editing the system network. While the 
O’Donnell grapher automatically lays out the graph, this grapher requires the user to 
click on the location on the canvas where they want the system. The advantage of this 
approach is that the user has more control of the graph, but with large grammars, a 
change in one system may necessitate moving many systems. 

In 1999, O’Donnell extended his grapher to allow graphical editing of the network as 
well. This is now incorporated into various tools, such as his Coder software and used 
for editing grammars for his parsers and generator. A Java version of the tool is being 
integrated into the KPML Text Generation system. 

As part of the SysAm Toolbench, Canzhong Wu (Macquarie University) also 
developed a grapher for system networks (late 1990s), So far, the network is not 
editable directly, rather the user edits the systems within a text file. However, his 
grapher is utilised as a means of selecting selection expressions within his SysFan 
coding system (see above). 

9 Conclusions 

The long interaction between SFL and computation has enriched both sides. For SFL 
there are some particular lessons to be learnt and challenges to be met. It is 
interesting, for example, that SFG, when used for text generation, favours rich, 
functionally complex, descriptions. Yet when we apply SFG to parsing, the pressure 



 

26 

is to reduce the richness, move towards a grammar which, at its first bite, deals most 
directly with form. However, this is not to say that we need to imitate the formal 
approach of the post-Chomskian models: if language has evolved in the expression of 
meaning, then we should expect the forms of language to be organised in meaningful 
ways. However, language has also evolved to be learnt by infants, and as such, the 
patterns of language cannot be so complex that this is an impossible task. But our 
current SFGs say very little about the patterns of language that are being learned: their 
accounts of syntagmatic configurations and instantiated resources is still very 
exploratory. The truth is that we need deeper accounts of both of these two factors. If 
we are to use the same SFG for both the generation and analysis of text, we will need 
to enrich it to contain both the functional complexity that we are familiar with and the 
relative formal simplicity that makes parsing, by people and machines, the robust and 
reliable facility that it is. 
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i Previously, specific-purpose ‘computers’ were constructed for various tasks, such as vote counting. 
Only during the 1940s were general-purpose computers created, capable of storing a program loaded 
from an external source. 

ii The EDA project also included Christian Matthiessen, Guenter Plum, Chris Nesbitt, Licheng Zeng 
and Arlene Harvey. The project produced very interesting results which were sadly under-reported at 
the time. Licheng Zeng produced a discourse-level analyser, which critiqued the multi-sentence 
structure of the text. 


