
Mick O'Donnell

Department of Linguistics,

University of Sydney,

Australia, 2006

email: mick@darmstadt.gmd.de

June 1995

WAG:

Sentence Generation

Manual

ii

Contents

Contents ii

Chapter 1 The WAG Sentence Generator1

1. Introduction 1
2. Sentence Generation and Multi -Sentential Text Generation 1
3. Loading the Sentence Generator 2
4. How to Use the Sentence Generator 2

Chapter 2 Writing Sentence Specifications..................................3

1. Semantic Specifications 3
2. Roles of the Speech-Act 4
3. Ideational Specification 4

3.1 Generating Sentences Directly from the Knowledge-Base 5
3.2 Ideation Specified within Sentence Specifications 6

4. Textual Specification 6
4.1 Theme 6
4.2 Relevant-Entities 7
4.3 Recoverable-Entities 7
4.4 Shared-Entities 7

5. Additional Fields of the Input Specification 7
5.1 Constraint 7
5.2 Preselect 8
5.3 Prefer 8

6. Simpli fying the Semantic Specification 8
6.1 Semantic Defaulting 8
6.2 Macros 9

7. The Speaker and Hearer Roles 10

Chapter 3 Running Sentence Specifications...............................11

1. Running Sentence Specifications 11
2. Evaluating Sentence Specifications in a Buffer 11
3. The Generator Menu 11
4. Setting Generator Preferences 12

4.1. Display Mode 12
4.2. Selection Mode 13
4.3. Control Strategy 13
4.4. Modes of Use 13

5. Setting Feature Defaults 14
5.1 Feature Preferences 14

6. Speech Output 14
7. Debugging Lexification 14
8. The Generator Interface 15

8.1. The Generation Process 16
8.2. The ‘Actions” of the Stepper 16
8.3. Setting Stepper Breakpoints 16
8.4. Stepping Through the Generation 17

WAG Generation Manual iii

8.5. Other Buttons 17
8.6. Viewing Sentence Structure 18

10. Random Sentence generation 18
11. Using the Coder to Drive Generation 18

Chapter 4 Architecture of the WAG Sentence Generator...........19

1. Theoretical Issues 19
1.1. Control Strategies 19
1.2. Deterministic vs. Non-Deterministic Generation 20

2. WAG's Generation Process 22
2.1. The General Algorithm 22
2.2. Initial Processing of the Input 22
2.3. Lexico-Grammatical Construction 23
2.4. Lexical Selection 28
2.5. Text and Speech Output 29

Chapter 5 Comparison With Penman...30

1. Similarities to Penman 30
2. Differences from Penman 30
3. Summary 32

Appendix A Example Semantic Forms..33

1. A Simple Utterance 33
2. Changing Tense 33
3. Progressive Aspect 34
4. Referring To Entities 34

4.1 Identifiabilit y 34
4.2 Recoverabilit y 35
4.3 Speaker and Hearer Roles 35

5. Changing the Theme 36
6. Varying The Speech Act 37

6.1 eli cit-polarity 37
6.2 eli cit-content 37
6.3 Proposing in response to an eli citation 38
6.4 Imperative (negotiate-action) 38
6.5 Other Responding Moves 38
Not yet working: 38
6.6 Salutary Moves 39

7. Controlli ng Modality 39
8. Varying the Process Type 40

8.1 Material Processes 40
8.2 Verbal Processes 40
8.3 Mental Processes 40
8.4 Relational Processes 41

9. Types of Circumstances & Qualiti es 41
10. Clause Complexes 41
11. Grammatical Metaphor 42
12. Content Selection 43

Bibliography ..44

1

Chapter 1

The WAG Sentence Generator

1. Introduction

The WAG system includes a single-sentence generation program, which allows the
user to specify the semantics of a sentence, and have the program generate a sentence
expressing the semantics. This manual describes various aspects of this sentence
generator, including the input specification language, how to use the WAG interface to
control generation, and how to view the results of generation. An overview of the
generation algorithm is also provided, and a large number of example sentences
demonstrating how various syntactic forms can be achieved.

2. Sentence Generation and Multi-Sentential Text Generation

The aim of a typical text generation system is to produce a text which satisfies some
set of pre-stated goals. Such systems are provided with a knowledge base -- which
contains information to be expressed -- and a set of goals. The system then organises
this information into sentence-length chunks, realises these chunks as sentences, and
prints or speaks the text. Figure 1 shows a typical application of a text generation
system: a weather satellit e beams down weather information to a receiver dish, which
passes the information to a computer. The computer draws upon this knowledge base
(and perhaps other sources) to generate a weather report.

WAG Generation Manual 2

Weather Data
from Satel ite

Today's Weather
Today's weather should be mild,
with occasional showers in the late
afternoon..
...
...

Figure 1: A Weather Report Generation System

Ideation
Base

Discourse
Goals

Content Selection

Text Organisation

Speech/Text

Sentence Generation

Figure 2: From Knowledge-base to Text/Speech

A possible architecture for this text generation process is shown in figure 2. The
three stages (which can be inter-mixed) of this architecture are:

1) Content Selection: Determining which of the facts in the ideational (knowledge)
base need to be expressed to best achieve the discourse goals.

2) Text Organisation: Splitti ng the selected content into segments realisable as
single sentences (semantic specifications), and ordering these segments into a
sequence which best achieves the discourse goals. Different discourse goals may
result in different orderings.

3) Sentence Generation: realising these segments as sentences.

The WAG system handles only the last of these stages. However, users who wish to
build their own multi -sentential text generation systems can use the WAG system to

WAG Generation Manual 3

handle sentence generation. The users system need only supply semantic specifications
of sentences, and leave the details of syntactic generation and lexical selection to WAG.

This manual will i ntroduce the WAG Sentence Generation sub-system, and detail it s
use. Section 2 discusses how to write sentence specifications for the generator. Section 3
details how to run these specifications. Section 4 details some of the internal workings
of the generator, and section 5 compares the WAG sentence generator with the well -
known sentence generator, Penman (Mann 1983; Mann & Matthiessen 1985). The
Appendix provides many examples of sentences, showing how to generate specific
forms.

WAG Generation Manual 4

Chapter 2

Writing Sentence Specifications

0. How to Use the Sentence Generator

The generator may already be part of your distribution. If not, type (load-generator)
into your li sp listener.

To produce sentences, you can either use an existing resource model (the Dialog
resource model is best for this purpose), or write your own. If you are just learning
WAG, it is best to use the Dialog resource model. The rest of this section provides
background information about writing sentence-specifications, and the Appendix
provides many examples, showing how to produce particular variations.

If you are new to Lisp environments, you can make a sentence-specification run by
either:

i) cut/paste the sentence-sepcification into your li sp listener (the lisp prompt),
followed by a carriage return; or

ii) placing the cursor after the last parenthesis of the form and pressing the eval-li sp
key (Apple-e on a Mac, control-x e in many Sun-based lisps).

More advanced users may wish to link the sentence-realiser into a multi -sentential
text-planner. For this purpose, you would need to use the say-example function (see file
Processes/Generator/say.lisp). Its arguments are described in Appendix B below.

1. Semantic Specifications

Once the Generation module is loaded, you can generate sentences by evaluating
semantic specifications.1 A semantic specification is a specification of the semantics of
a single utterance. It is basically the specification of a speech-act, including the speech-
function (elicit, inform, greet, etc.), the ideational content, modality, polarity, etc., and
textual information (e.g., relevance, recoverabilit y, themacity etc.).

Figure 3 shows a sample semantic specification, from which the generator would
produce: I’ d li ke information on some panel beaters. The distinct contributions of the
three meta-functions are separated by the grey boxes.

1WAG can also be set to generate without semantic constraint, by making random or default lexico-

grammatical selections, or by allowing a human to make these decisions (see sections X & Y).

WAG Generation Manual 5

Interactional
Specification

Ideational
Specification

Textual
Specification

(say di al og- 5

 : i s (: and i ni t i at e pr opose)
 : speaker (Cal l er : i s mal e : number 1)
 : Hear er (Oper at or : i s f emal e : number 1)

 : pr oposi t i on (P5 : i s l i ke
 : senser Cal l er
 : phenomenon (i nf o : i s (: and i nf or mat i on
 gener i c- t hi ng)
 : mat t er (pb : i s panel - beat er
 : number 2))
 : pol ar i t y (pol 5 : i s posi t i ve)
 : modal i t y (mod5 : i s (: and vol i t i onal condi t i onal)))

 : t heme Cal l er
 : r el evant - ent i t i es (P5 i nf o pol 5 Cal l er pb)
 : r ecover abl e- ent i t i es (Speaker Cal l er)
 : shar ed- ent i t i es ni l
)

Figure 3: The Semantic Specification for
"I'd li ke information on some panel beaters."

say is the name of the lisp function which evaluates the semantic specification, and
calls the generation process.

dialog-5 is the name of this particular speech-act -- each speech-act is given a unique
identifier, its unit-id.

The :is field specifies the features of the unit. This is used both for the speech-act as
a whole, and for any unit in the ideational content. In this example, the speech-act is
provided with a feature-specification (:and initiate propose). The proposition is
provided with a single ideational feature: li ke. The feature-specification can be a single
feature, or a logical combination of features (using any combination of :and, :or or
:not). One does not need to specify features which are systemically implied, e.g.,
specifying propose is equivalent to specifying (:and move speech-act negotiatory
propose).

2. Roles of the Speech-Act

Most of the colon-marked fields in figure 3 specify the roles of the units, and their
fill er. For example, the following specifies that the Speaker role is fill ed by an entity
with unit-id Caller, which is of type male.

:speaker (Caller :is male)

We can specify the fill er of a role in two ways:

a) Unit-Id Only: We can refer to the unit using just an identifier, e.g., :Speaker
Caller. If an entity with this name has already been defined, then the Speaker
role will point to this entity. If no entity of this name has been defined, then a
new entity is defined and inserted into the knowledge-base.

b) Unit-Definition: If the role-fill er has not been introduced before, we can define
the entity within the role-fill er slot. For instance, :speaker (Caller :is male)

WAG Generation Manual 6

defines an instance Caller, declares the instance to be of type male, and makes
the Speaker role point to this entity. A unit-definition has the structure:

(<unit-id>
:is <feature-specification>
:role 1 <unit-specification 1>

:role 2 <unit-specification 2>

.....)

Units can also be defined separately from the ‘say’ f orm, for instance, by pre-loading
a knowledge-base (see section 2.2.1 below).

The possible roles of the speech-act are:

• Proposition: the ideational content of the speech-act -- a unit-specification;

• Speaker: the unit-specification of the speaking entity;

• Hearer : the unit-specification of the hearing entity;

• Required: for eliciting moves, the unit-id of the wh- element. This is a pointer
to the element of the ideational content which is being elicited;

• Elicited: for proposing moves in response to an elicitation, indicates which
element corresponds to the Required element in the elicitation. Fragmentary
responses may include just the elicited element.

3. Specifying Content: Ideational Specification

One fundamental difference between WAG's input language, and that of Penman,
involves the relation between sentence specifications and the knowledge-base (KB). In
both systems, the KB is used to represent the world we are expressing, the entities of
interest, the processes they partake in, and the relations between these participants and
processes.

In Penman, the ideational component of a sentence plan is not part of the KB, but
rather a re-expression of the knowledge in a form closer to language. SPLs are
constructed with reference to the KB, but there is no necessary correspondence between
the form of the knowledge and the form of the SPL. This is important for Penman, since
SPLs are designed to work with a variety of different knowledge-base systems. Penman
users supply a function to construct SPLs from the knowledge-base. SPLs may also be
constructed by hand, without any knowledge-base being attached to the system at all .

3.1 Generating Sentences Directly from the Knowledge-Base
The WAG sentence generator, on the other hand, is designed to be used hand-in-hand

with its own KRS, so the two are more highly integrated. The standard form of a
sentence-specification does not itself contain a specification of ideational-structure,
rather it contains a pointer into the knowledge-base -- the fill er of the :proposition role
is usually the unit-id of an entity already defined in the knowledge-base.2 The other
fields of the sentence-specification are used to tailor the expression of the indicated
knowledge.

2As we will see below, we can actuall y supply an ideational specification in the :proposition slot, but this

should be seen as a short-hand form, allowing assertion of knowledge into the knowledge-base at the same time as
specifying a sentence.

WAG Generation Manual 7

To summarise, a Penman-based text-generator needs to build an ideational structure
re-representing the content of the KB, which the realisation component then operates
on, rather than the KB itself, while a WAG-based text-generator just includes in the
sentence-plan a pointer into the KB, and the realisation component then refers directly
to the KB to generate a sentence.

To demonstrate WAG's approach, we show below the generation of some sentences
in two stages -- firstly, assertion of knowledge into the KB, and then the expression of
indicated sections of this KB. The following asserts some knowledge about John and
Mary, about how Mary left a party because John arrived at the party. tell is a li sp macro
form used to assert knowledge into the KB.

 ; Participants
 (tell John :is male :name "John")
 (tell Mary :is female :name "Mary")
 (tell Party :is spatial)

 ;Processes
 (tell arrival
 :is motion-termination
 :Actor John
 :Destination Party)

 (tell leaving
 :is motion-initiation
 :Actor Mary
 :Origin Party)

 ;relation
 (tell causation
 :is causative-perspective
 :head arrival
 :dependent leaving)

Now we are ready to express this knowledge. The following sentence-specification
indicates that the speaker is proposing information, and that the head of this information
is the leaving process. It also indicates which of the entities in the KB are relevant for
expression (and are thus included if possible), and which are identifiable in context (and
can thus be referred to by name). The generation process, using this specification,
produces the sentence: Mary left because John arr ived.

(say gramm-met1
 :is propose
 :proposition leaving
 :relevant-entities (John Mary arrival leaving causation)
 :identifiable-entities (John Mary))

=> Mary left because John arrived.

As we stated, this approach to sentence specification does not require the sentence-
specification to include any ideational-specification, except for a pointer into the KB.
The realisation operates directly on the KB, rather than on an embedded ideational
specification.

Different sentence-specifications can indicate different expressions of the same
information, including more or less detail , changing the speech-act, or changing the
textual status of various entities. The expression can also be altered by selecting a
different entity as the head of the utterance. For instance, the following sentence-
specification uses the cause relation as the head, producing a substantially different
sentence:

WAG Generation Manual 8

(say gramm-met2
 :is propose
 :proposition causation
 :relevant-entities (John Mary arrival leaving causation)
 :identifiable-entities (John Mary))

=> John's arrival caused Mary to leave .

For details about how to assert information into the KB, see The WAG KRL Manual.

3.2 Ideation Specified within Sentence Specifications
Sometimes it is more convenient to specify ideational content within the sentence

specification, as in Penman's SPLs. WAG allows this form of expression also: if the
fill er of the :proposition field is an ideational specification rather than a unit-id, then the
specification is asserted into the KB, and generation proceeds from there. This approach
was exempli fied in figure 3 above.

The syntax for this ideational specification is as follows (see The WAG KRL Manual
for fuller explanation).

Syntax: (<instance-id> &rest <Keys >)

<instance-id> - the id of an instance - if it exists, the info will be added to the
existing instance, else a new instance is created. If the instance-id is "_", then WAG-
KRL will provide a unique instance-id of its own, e.g., (_ :actor Fred)

<Keys> any of the following:

:is <le> a description of the features the item has. <le> is a logical expression of
features e.g., human, (:and human male), (:not human), (:or process quality).

:<role> <unit-id> e.g. :location Sydney - sets the fill er of the role to the specified
unit. If the role already exists for this unit, the new role fill er is unified with the
existing one. For instance, if we assertedf the speaker of a say form to be
:speaker (S1 :is female), then we can use S1 as a role fill er in the proposition,
e.g., :actor S1.

:<role> <unit-description> Rather than proving an unit-id, we can provide a
specification of the fill er in more full -form. Basically, we replace the unit-id
with a full specification, e.g.,

(say Example1
 :proposition (p1 :is material-process
 :actor (fred :is human
 :name "Fred")
 :actee (_ :name "Mary")))

:<role> <string/number> e.g. :name "John" - creates an instance for the string or
number (see special values in the KRL Manual), and makes that instance the
fill er of the role. If an instance with that value already exists, it is used rather
than creating a new instance.

:<role> (:and unit-id1 unit-id2 ...) e.g. :actor "(:and John Mary Paul) - for roles
which allow multiple-role-fill ers, creates a set-unit which groups these
instances. They will be generated as a conjunction, e.g., John, Mary and Paul..

:<role> <variable-reference> e.g. :actor * focus* .Designer - sets the role-fill er to
the instance pointed to by the reference. References can only be a variable-
reference (see section on reference forms in the KRL Manual).

WAG Generation Manual 9

:<role-chain> <instance-id/tell -form/special/var iable-reference> - In any of the
above forms, the role specification can be replaced by a role-chain, e.g.,
:actor.location.name "Sydney"

:constraints <constraint> allows the use of the non-macro-mode logic (see
the KRL manual) e.g.,
 (tell p1 :constraints (:or (:type Actor male) (:fill Actee female)))

4. Controlli ng Expression: Textual Specification

The sentence-specification includes several fields which specify various textual
statuses of the entities in the knowledge-base:

4.1 Theme
This field specifies the unit-id of the ideational entity which is thematic in the

sentence. If a participant in a process, it will t ypically be made Subject of the sentence.
If the Theme plays a circumstantial role in the proposition, it is usually realised as a
sentence initial adjunct. WAG's treatment of Theme needs to be extended to handle the
full range of thematic phenomena.

4.2 Relevant-Entities
This field contains a list of the ideational entities which are in the relevance space

(see chapter 5 of my thesis), and are thus selected for expression. In the example in
figure 3, five entities are nominated as relevant:

:relevant-entities (P5 info pol5 Caller pb)

This field is not necessary when an explicit ideational specification is included in the
‘say’ f orm. In such cases, the generator assumes that all the entities included within the
specification are relevant, and no others.

However, when the :proposition slot contains only a pointer into the knowledge-
base, the :relevance field specifies which elements of the KB to express. See chapter 5
of my thesis for an example using the relevance space to select out successive chunks of
a KB (there called a macro-ideational structure).

4.3 Recoverable-Entities
This field contains a list of the ideational entities which are recoverable from context,

whether from the prior text, or from the immediate interactional context (e.g., the
speaker and hearer). See chapter 5 of my thesis for detail .

4.4 Shared-Entities
This field contains a list of the ideational entities which the speaker wishes to

indicate as known by the listener, e.g., by using definite reference. See chapter 5 for
details.

WAG Generation Manual 10

5. Additional Fields of the Input Specification

Some additional fields are allowed in the semantic specification, extending the
expressive power of the input language.

5.1 Constraint
This :constraint field allows the user to assert structural information which cannot be

expressed by simply specifying features or roles of elements of the speech-act. For
instance, tense/aspect is specified in the WAG system by specifying the relative
ordering of three points of time (following Reichenbach 1947):

Speaking-Time: when the utterance is made;

Event-Time: when the event takes place;

Reference-Time: A reference point adopted by the speaker.

We can provide a :constraint field in the semantic specification to express these
relations:

(say utterance-1
 :is (:and initiate propose)
 :proposition P1
 :speaker Caller
 :constraint (and (< Proposition.Event-time Reference-time)
 (= Speaking-time Reference-time)))

5.2 Preselect
This field allows the user to ‘preselect’ f eatures of the lexico-grammatical structure.

Some grammatical decisions may not be semantically constrained, and this field allows
the user to specify which feature to choose, e.g.,

:preselect ((p3 indefinite-pronom-group))

The first element of a preselection specification (p3 in this example) is the unit-id of
an ideational unit, the second is a feature-specification which the grammatical realisate
of the ideational unit must have. This feature-specification must not conflict with the
rest of the constraints on that unit, meaning that it must be compatible with the usual
lexico-grammatical preselections, and also with the feature’s selection-constraint.

5.3 Prefer
While :preselect specifies features that particular grammatical units must have,

:prefer allows the user to specify feature defaults, e.g.,

:prefer (passive)

During the generation process, there is often more than one feature in a system
appropriate to express the semantic specification. This is true when no feature in the
system is preselected, and the selection-constraints on more than one feature are met. In
these cases, an arbitrary choice needs to be made. By placing a feature in the :prefer
field, the user can cause the preferred feature to be chosen in such cases.

Feature preferences can also be set globally using the * feature-preferences* variable.
This variable is also used for semantic defaulting, as discussed just below.

WAG Generation Manual 11

6. Simpli fying the Semantic Specification

Hovy (1993) points out that as the input specification language gets more powerful,
the amount of information required in the input specification gets larger and more
complex. The Penman system uses a couple of methods to avoid the growing
complexity of the input specification. These have been adapted in WAG as follows.

6.1 Semantic Defaulting
When the input-specification leaves particular semantic systems unresolved, Penman

chooses a feature on a default basis. For instance, the following features are the default
when not stated in the input specification: Speech-function: statement; Tense: simple-
present; Polarity: positive; Modality: none.

WAG also uses feature defaults. A variable * feature-preferences* is defined, which
holds a list of the default (or preferred) features. Before generation begins, the processor
goes through each unit of the semantic specification and ensures that, for those systems
with no preselected choice, the default feature is selected, if its selection-constraint is
met.

Defaulting is necessary since the WAG system uses a deterministic generation
strategy -- each grammatical choice must be resolvable as it is met (see section 4.1.3
below). Grammatical choices will not be resolvable unless the semantic decisions they
depend on have already been resolved. WAG thus forces those semantic decisions
which have not been resolved by the input specification.

Below is shown the Say form from figure 3, this time in a reduced form relying on
defaults:

(say dialog-5
 :speaker Caller
 :proposition
 (P5 :is like
 :senser Caller
 :phenomenon (info :is (:and information generic-thing))
 :matter (pb :is panel-beater
 :number 2))
 :modality (mod5 :is (:and volitional conditional))))

6.2 Macros
Penman allows the user to define macros -- short forms in the input specification

which expand out to more extensive forms. For instance...
:tense present-continuous

...in an input specification is replaced with the following before processing begins:

 :speech-act-id
 (?sa / Speech-act
 :speaking-time-id (?st / time
 :time-in-relation-to-speaking-time-id ?st
 :time-in-relation-id (?st ?et ?st) ?et
 :precede-q (?st ?et) notprecedes))
 :event-time (?et / time
 :precede-q (?et ?st) notprecedes))

WAG does not use macros. To serve the same function, we can add features to the
networks which represent complex specifications. For instance, a system has been added
to the speech-act network, which includes features such as present-continuous, past-

WAG Generation Manual 12

perfect, etc., each feature being associated with realisations which assert the necessary
structural constraint (see figure 4). These features can then be included in the feature-
field of the sentence specification, acting as a short-form for the associated structural
constraint.

simple-present
(:and (= Speaking-Time Reference-Time)
 (<= Reference-Time Proposition.Event-Time))

past-perfect

(:and (< Reference-Time Speaking-Time)
 (< Proposition.Event-Time Reference-Time))

present-perfect

speech-act

Figure 4: Adding Features as a Form of Macro

7. The Speaker and Hearer Roles

The Speaker and Hearer fields are presently used for two purposes:

• Pronominalisation: The Speaker and Hearer roles are used to test if
pronominalisation is appropriate: if the fill ers of these roles are also part of the
proposition being expressed, then pronominalisation is called for, e.g., I, you,
etc.

• Voice Selection: WAG checks the gender feature of the Speaker to determine
which voice to use in Macintosh’s text-to-speech system.

Note that the attributes of the Speaker and Hearer do not need to be re-defined for
each sentence. We can pre-define the speech-participants as entities in the knowledge-
base. Each speech-act specification thence only needs to refer to the unit-id of the
speaker and hearer.

In theory, the Speaker and Hearer fields are available for user-modelli ng purposes:
lexico-grammatical choices can be constrained by reference to attributes specified in the
Speaker and Hearer roles (cf. Paris 1993; Bateman & Paris 1989b; Hovy 1988a). Since
the fill ers of the Speaker and Hearer roles are ideational units, they can be extensively
specified, including their place of origin, social class, social roles, etc. Relations
between the speaker and hearer could also be specified, for instance, parent/child, or
doctor/patient relations. Lexico-grammatical decisions can be made by reference to this
information: tailoring the language to the speaker’s and hearer’s descriptions. This has
not, however, been done at present: while the implementation is set up to handle this
tailoring, the resources have not yet been appropriately constrained.

WAG Generation Manual 13

Chapter 3

Generation Interfaces: Macintosh

1. Running Sentence Specifications

Once written, semantic specifications can be run in a number of ways. This section
describes these. The three main ways, described below, are:

• Evaluating Sentence Specifications in a Buffer;

• Using the Window-Based step-through generation Interface;

• Using the Coder to step through the generation, with the user making each
choice.

2. Evaluating Sentence Specifications in a Buffer

Once you have written a semantic specification, you can evaluate it. As with all Lisp
forms, you evaluate it by placing the cursor after the last parenthesis, and then choose
Eval Selection from the Eval menu (alternatively, type Cmd-e).

You can also evaluate all sentence specifications within an open file buffer by
selecting Eval Buffer from the Eval menu (alternatively, type Cmd-h).

You can evaluate an unopened file of sentence specifications using the Load File
option from the Eval menu.

WAG Generation Manual 14

3. The Generator Menu

The generation menu offers some other options which may be useful during sentence
generation. See figure 5.

Figure 5: The Generation Menu

• Debug Lexification: Brings up an interface which allows you to step through
the lexification process for each leaf of the grammatical structure. Helps you to
locate where the process went wrong. See below.

• Re-Display Results: Displays the last sentence again. Use in conjunction with
changed display modes (see Preferences above) to show alternative views of the
sentence.

• Show Realisations of Top: Prints out the realisations associated with the top-
level of the grammatical structure.

• Show Realisations of Current: Prints out the realisations associated with the
current grammatical unit, assuming generation broke at some point before
completion.

Graph Current Gram Unit: Produces a graph of the current sentence structure.

Graph Current Speech-Act: Produces a graph of the current speech-act being
expressed.

Show Current Gram Unit: Brings up the Resource Explorer card for sentence.

Show Current Speech-Act: Brings up the Resource Explorer card for the
current speech-act being expressed.

Load Example: Loads in an example form [Not Currently Working].

Re-Generate Current Speech-Act: Re-generates the current speech-act, most
useful after some grammatical changes have been made.

WAG Generation Manual 15

4. Sett ing Generator Preferences
Choose Preferences... from the Generator menu to change some options in the

generation process. See figure 6.

Clear KB before running Say

Print Time Taken in Says

Print each word as Generated

Control Strategy Target-Driven

Selection Mode Last

Display Mode Text-Only

OK Cancel

Figure 6: The generation Preferences Dialog

4.1. Display Mode
Controls how the generated sentence is displayed:

a) Text Only: Only the final sentence is display.

b) Continuous Text: If a series of sentence-specifications are evaluated, the
generator displays these as a single paragraph. A new paragraph is started
whenever the fill er of the speaker role changes.

c) Function Structure: prints the top-level function-structure of the sentence,
and the features of this unit.

d) Long Structure: prints the full function-structure and feature structure of the
sentence.

e) Internal: prints the MCL-internal representation of the sentence.

f) Speech: if the Macintosh Speech manager is installed, the sentence is
uttered. If the gender of the speaker is supplied in the sentence-specification,
then an appropriate voice is selected.

4.2. Selection Mode
Controls the order in which features are tested:

• First: Features are tested in the order in which they appear in the system
definition, with the exception that explicitl y stated feature-preferences (see
above) are ordered first.

• Last: Features are tested in the reverse of the order in which they appear in the
system definition, with the exception that explicitl y stated feature-preferences
(see above) are ordered first. This ordering is the default, since usually
Systemicists place those features with no realisation last, and thus selecting this
mode results in the simplest structures.

• Random: Features are tested in a random order.

WAG Generation Manual 16

4.3. Control Strategy
This choice controls whether or not the generation of grammatical structure is

constrained by the semantic:

• Target-Dr iven: Use the Feature Selection Constraints to constrain the choice of
each feature, and in lexical selection, use the semantic referent as a constraint.

• None: No semantic constraint is used -- the first suitable feature in each system
is selected, as ordered in regards to the selection mode discussed above.

4.4. Modes of Use
Check or uncheck the check-box to switch between different generation modes:

• Print Each Word as Generated: If on, each word is printed as it is selected
(incremental display). Otherwise, we produce nothing until the entire sentence
structure is completed.

• Print Time Taken: If on, the program prints how much time the generation of
the sentence took.

• Clear KB before Running Say: If on, the program clears the knowledge base
before each ‘say is evaluated. This is useful i f you are changing the ideational
content of the say-form, in a way which is contradictory. If you are generating
from a KB (see section 2.2) then this mode will not work.

5. Sett ing Feature Defaults

5.1 Feature Preferences
Setting feature defaults (either semantic or grammatical) at present requires you to

edit a file. Open the load file for the grammar you are using, and look for the :feature-
preferences field. Add the feature you want to this li st, abd evaluate it.

Undefaulted Systems List: XXXX

6. Speech Output

If the Macintosh Speech manager is installed on your machine, then you can have
WAG speak the generated text. To do this, you need to select Preferences... from the
Generation menu, then switch Display Mode to Speech.

Two other menu items are used for speech. Look under the General menu:

• Speech Voice: lets you pick the current speech voice.

• Speak Selection: the currently highlighted selection will be spoken.

WAG Generation Manual 17

7. The Generator Interface

WAG includes a stepping interface for the generator. This interface allows you to
view each step in the generation of a sentence, and see the structure as it is built up.

Once you have evaluated a sentence specification, you can select Generation
Interface from the Generator menu. You will be presented with a window, as shown in
figure 7.

Go
Single Step Break Reset Graph Speech Act Graph Sentence

Set Breakpoints Load Speech Act Force Choice

Current System: CLAUSE-ADVERBIAL-SYS

no-adverbial-…
adverbial-modi…

Current Feature: ADVERBIAL-MODIFIER Realisations
Require Adv-Qualif
Type Adv-Qualif adverb
Order Pred Adv-Qualif

Semantic Constraint
Exists Referent.Process-Quality
Relevant Referent.Process-Quality
Same Referent.Process-Quality Adv-Qualif.Referent

Present Unit

TOP

Selected Features

full
clause-simplex
clause

Last Action: Advance to Next Feature

Result: T

Next Action Test current feature against preselections

Systems to Enter

clause-adverbial-…
primary-circ-sys
beneficiary-choice
object-insertion
process-type
progressive
perfect
voice
dependence

Grammatical Structure

tense
subject
pred(verb)

Figure 7: The Generation Interface

7.1. The Generation Process
WAG uses a similar generation algorithm to that used in Penman. Generation is

basically driven by the grammar system network. The program steps through this
network from the left (choosing first between clause, group, and word), referring to
both the preselections on the unit, and to the feature-selection constraints on each
feature, to see which feature to choose in each system. See Section 4.2.4 below for more
description of this process. See O'Donnell -Thesis, chapter 6, for more information on
feature-selection constraints.

7.2. The ‘Actions” of the Stepper
Generation proceeds via a series of actions -- subtasks in the generation process.

These include, for instance, test-semantic-constraint, assert-realisations, test-
preselections, order-constituents, select-lexeme, etc.

Towards the bottom of the interface is a display which shows which action was just
performed, what result was recorded (the sequence of actions depends on the result of
the prior action), and what the next action will be.

WAG Generation Manual 18

You can set Stepper Breakpoints (see below) so that the program only stops before
certain actions. I generally stop only on test-semantic-constraints, which means there is
only one break per feature in the traversal.

7.3. Sett ing Stepper Breakpoints
It is often desirable to let the generation process run, and only stop at certain places.

Pressing the Set Breakpoint button will bring up a dialog which allows you to control
the various breakpoints (see figure 8). Two sorts of breaking are possible:

• Action Breaking: generation will break whenever the actions in the right-hand
column are reached.

• Feature Breaking: generation will break whenever the features in the right-
hand column are reached.

To switch between these types of breaking, click down on the Break Type field
which says "Action" or "Feature" -- this is a popup menu.

Double-clicking on an item in either column will move it to the other column.

Break Type: Action

Don't Break On Break On

enter-next-system
try-next-feature
test-preselections
test-semantic-constraints
assert-realisations
add-new-systems
order-the-constituents
realise-constituents
realise-next-constituent
test-if-lexical-unit
print-results

Done

Double-Click on item to Move it

to the other list.

Figure 8: The Set Breakpoints Dialog

7.4. Stepping Through the Generation
Four buttons control the progress of the generation.

GO: The generator proceeds until the next break-point is reached.

Single-Step: The generator performs the next action only.

Break: Generation is stopped as if a break-point was reached. Press Go or Single-
Step to proceed.

Reset: Resets the interface, clearing all generated structure, and ready for starting
again. Note that the current speech-act is not cleared, so Go will start the
generation again.

WAG Generation Manual 19

7.5. Other Buttons
Some other buttons are available:

Force Choice: Allows the user to go against the default feature order, selecting a
feature of lower priority. The feature may fail to be selected if it goes against
either the preselections or its feature-selection constraint fails.

Graph Speech Act: Click here to display a graph of the current speech act.

Graph Sentence: Click here to display a graph of the sentence structure so far.

Load Speech Act: Allows the user to load in a new speech-act from the memory-
resident examples (defined using the Examples facilit y). (TEMPORARILLY
NOT FUNCTIONAL).

7.6. Viewing Sentence Structure
In the bottom-left-hand corner of the window is a display of the grammatical

structure of the current unit as it is built up. As each feature is selected, its realisation
rules are asserted, and the accumulated structure is shown here.

Alternatively, press the Graph Sentence button to see a graph of the sentence as so
far generated. Use the graph menu (click on any node of the graph) to explore the
structure using the Resource Explorer.

Alternatively, double-click on the Present-Unit identifier, shown in the top-right-
hand corner of the interface. This will t ake you directly to the Resource Explorer card
for this unit.

8. Debugging Lexification

Sometimes the generation process results in a sentence other than the one you want.
Often, this is because an unexpected lexical choice was made. To help discover where
the lexification process went wrong, WAG includes a lexification debugger, which
allows you to step through the lexification process, so you can see where the problem
arises.

To open the Debugger, select Debug Lexification from the Generation menu. A
window similar to that in figure 9.

WAG Generation Manual 20

Lex-ID: UNIT323 Sem-id: M3Lex-IDs
unit323
unit324
unit330
unit364
unit351

Lex Features
positive-modal
nonreduced-m…

Inflect Features

Candidates
will-aux
would-aux
must-aux
might-aux
can-aux1
can-aux2
could-aux2
could-aux1
may-aux

Sem Features
ability
nonvolitional
nonconditional
modal-quality
quality
ideational-unit
root

Lexifiers

Step Current:

Selection:

Message:

Figure 9: Debugging the Lexification Process

Lex-IDs: The Lex-id box contains a list of all l exical items contained in the last
generated sentence. Click on one of these and the interface will display information
about this lexical item, namely:

Lex-Id: The unit-identifier of the word-rank grammatical-unit.

Sem-Id: The unit-identifier of the referent of the item.

Lex Features: The lexical features which the generation process required for the
lexical item.

Inflect Features: The inflectional features which the generation process required
for the lexical item.

Candidates: A list of the lexical-items which are syntactically appropriate, before
semantic filtering.

Sem Features: The semantic features of the referent, ordered in terms of
decreasing delicacy.

Lexifiers: The lexical items which express the currently selected semantic feature.

The lexification proceeds as follows: the program takes each semantic feature in turn,
and looks up the lexical items which include that feature. This set is intersected with the
set of grammatical candidates, and the intersection is displayed in the Lexifiers field.
Each of these are unified in turn against the full semantic constraint, to see if all of the
semantic features of the lexeme are compatible with sem-id. if so, the item is selected.
Otherwise, the next lexifier is tried. If no lexifiers of this feature are appropriate, then
the next semantic feature is tried, until some appropriate lexical item is found.

Use the Step button to step through this process. To reset and start again, click on the
item in the Lex-Ids field.

10. Random Sentence generation

[To be Described]

WAG Generation Manual 21

11. Using the Coder to Dr ive Generation

The WAG Coder can be used as an interface to generation, allowing you to step
through the feature selection of a unit, making all the choices.

This interface is ideal for testing sub-parts of the grammar. The Coder interface
allows you to try alternative selections in systems, so that you can test a range of
structures which may be of interest.

 See the WAG Coder Manual for instructions in its loading and use.

• Load the grammar from which you want to generate.

• Specify the Coder Start feature to be grammatical-unit (or whatever the root of
your grammar network is).

• Step through feature selection. At any point, press the Generate button, and the
Coder will default the remaining choices and generate a unit.

• In this manner, you can generate units of any kind, e.g., clauses, groups or
words.

Often we know the sentence we want, but not what features it has. We can use the
Coder to try grammatical variants until we produce a sentence with the same
grammatical structure we are aiming at. We can then extend/modify the semantic
constraints to ensure these features are selected.

WAG Generation Manual 22

Chapter 4

Architecture of the WAG Sentence Generator

This section explores the inner workings of the WAG Sentence Generation System,
firstly in terms of its theoretical architecture, and then in terms of the processing
algorithms.

1. Theoretical Issues

This section discusses some methodological issues in the construction of a sentence
generation system.

1.1. Control Strategies
Most NLP can be viewed as a process of translating between strata: building a target

representation based on a source representation. Control strategies handle the mapping
between any two representational levels. In a tri-stratal system, we need two control
strategies (assuming a conduit architecture): one between micro-semantics and lexico-
grammar; and one between lexico-grammar and graphology.

a) Between Micro-Semantics and Lexico-Grammar : To produce a lexico-
grammatical representation from a semantic representation, we can use either a source-
driven (data-directed), or a target-driven (goal-directed) strategy:

i) Source-Dr iven: each feature of the semantic specification has associated lexico-
grammatical constraints (the lexico-grammatical consequences of the semantic
feature). To build a lexico-grammatical structure, we take each feature of the
semantic specification in turn, and apply its lexico-grammatical realisations.
This is repeated for each unit in the structure. In this way we build up a lexico-
grammatical structure.

ii) Target-Dr iven: the inter-stratal mapping constraints are represented as semantic
constraints on lexico-grammatical features. To build a lexico-grammatical
structure that encodes the semantic input, we traverse the lexico-grammatical
network, choosing a feature in each system whose semantic constraint matches
the semantic specification. Basically, we build a lexico-grammatical structure in
the grammar’s own terms, although the choices are constrained by the
semantics.

Most of the Systemic generation systems use the target-driven approach (e.g.,
Penman, Proteus, Genesys). The following quote from Matthiessen (1985) demonstrates
this for the Penman system:

"In Nigel ... initiative comes from the grammar, the general control of what happens
comes from the entry conditions of the systems. It is not the case that the semantic

WAG Generation Manual 23

stratum has its own control, does its work and presents the results to the grammar
for realisation. Instead, it is controlled by the entry conditions of the systems."

Patten’s SLANG system is the exception: grammatical features are preselected as the
realisations of the semantic features:

“Features at the semantic stratum may have realisation rules which preselect
grammatical features. Similarly, grammatical features may preselect features from
the phonological/orthographic stratum.” (1988, p44).

We can also distinguish between resource-driven and representation-driven systems:
a resource-driven system uses the resources to select the next rule or constraint to apply,
while a representation-driven system uses the information in the representation to
control the structure-building. Penman uses a mixture of both -- firstly, it is
representation-driven to the extent that the unit-of-focus -- the element being expanded -
- is chosen in reference to the lexico-grammatical representation: we start with the top
element (the clause), and successively expand elements down towards the leaves of the
tree. This represents a top-down, depth-first generation strategy. However, within each
unit, the construction is resource-driven: the system network is used to control the
construction of each unit’ s internal structure. The unit is constructed by a forward-
traversal through the network, asserting the realisations of each feature selected. In
simpler terms, the node-selection strategy is representation-driven, and the rule-
selection strategy is resource-driven.

The WAG generator follows the Penman tradition, using the lexico-grammar to
control the generation, expanding units in a top-down, depth-first manner. Each unit is
constructed as a result of a traversal of the system network. Section 4.2.4 below will
discuss the strategy in more detail .

b) Between Lexico-grammar and Graphology: While Penman and WAG both use a
target-driven control strategy between semantic and lexico-grammar, in the
graphological construction, control is source-driven. The source, in this case, is the
lexico-grammatical structure. The process finds the leaves of this structure (word-rank
elements), and recovers the associated lexical-items. Using these items, and inflectional
features, the appropriate graphological-forms are generated, and printed (with
formatting, e.g., capitalisation, spacing, etc.). Graphological generation in the WAG
system will be discussed more fully in section 4.2.6 below.

1.2. Deterministic vs. Non-Deterministic Generation
This issue is most often discussed in relation to parsing -- whether the parser resolves

each choice before continuing (deterministic parsing), or whether it explores each
alternative (non-deterministic parsing).

These same possibiliti es apply for generation also. We may reach a point in the
generation process where two alternative means of expressing the semantics both seem
valid. Often, each of the choices will l ead to appropriately generated sentences, the
choices representing alternative means of realising the meaning.3 In other cases,
however, some choices may lead to a dead-end in the generation process -- no
appropriate realisation is possible. This has been called a generation gap (Meteer 1990).

3In a full y-constrained system, all differences in form would be linked back to differences in meaning.

However, at present, it is diff icult to assign meaning differences to all form differences, e.g., the semantic
difference between “ I said that he was coming” and “ I said he was coming” . Such differences are defaulted in the
WAG system.

WAG Generation Manual 24

Generation gaps occur because choices are often dependent on each other -- if we
make the wrong choice at one point, there may be no valid alternatives at a later choice-
point. For instance, Meteer (1990, p63) gives an example of the generation of a process
involving someone deciding something important. At one point in the generation, we
face a choice between congruent realisation -- He decided -- or an incongruent
realisation -- He made a decision. Both choices seem equally valid. However, the
incongruent choice allows the ‘ important’ characteristic to be expressed -- He made an
important decision -- while the congruent choice does not -- *He decided importantly.

When the decisions on which a particular choice depends are not made before the
choice is reached, then we have a determination problem -- the choice cannot be
resolved. I will discuss below the two types of solution to this problem -- forcing a
decision (deterministic generation), and following all alternatives (non-deterministic
generation).

Non-Deterministic Generation: A non-deterministic generator doesn’ t make a definite
decision between alternatives, but either chooses one tentatively, or follows all
alternatives simultaneously. The same strategies that are available for non-deterministic
parsing are also available for generation:

• Simultaneous Generation: all options are carried forward at the same time.
This option includes ‘chart generation’ , along the lines of chart parsing (cf.
Haruno et al. 1993).

• Backtracking Generation: at each choice-point, an arbitrary decision is made.
When a generation dead-end is reached, the generator backtracks to the last
choice-point, makes a different choice, and proceeds from there. At one stage I
modified the WAG generator to allow backtracking. However, this generation
was very ineff icient due to the large size of the backtracking stack which needed
to be saved. For this reason I have switched to deterministic generation4.

Deterministic Generation: In deterministic generation, the process resolves choices as
they are reached. A problem for this approach is that there is not always suff icient
information to make the decision available.

Matthiessen (1988a) points out one problem-case for non-deterministic Systemic
generation: “How is the situation to be avoided where a chooser is entered before all the
hub associations needed are in place?” (p775). In terms of WAG, this problem is stated
as follows: the generator wishes to test a feature selection-constraint which includes a
reference to the Referent role of some unit. However, the fill er of the Referent role has
not yet been established. The establishment of the Referent role is performed in some
other system, which has not yet been entered. The feature selection-constraint thus
cannot be tested.

This kind of problem is common in writing Systemic grammars of reasonable
complexity. For instance, when choosing between the features single-subject and plural-
subject (concerning Subject-Finite agreement), the selection-constraints refer to
Subject.Referent, but the Subject’s Referent role may not have been established yet. It is
established in a simultaneous system, where the Subject is conflated with either the
Agent, Medium or Beneficiary.

4A variation of this approach stores only the choice made at each decision point, and not the generation

environment. When generation fail s, the process goes back to the beginning of the generation and re-creates the
structure, varying only the last choice. This approach has the advantage of far less storage space requirements.
However, the same structure-building work might be done over and over, meaning that this approach will be slow
if any degree of backtracking occurs. The approach is appropriate if the number of backtracks is assumed to be
very small , e.g., the first path is li kely to succeed, but we allow for the possibilit y of failure.

WAG Generation Manual 25

Nigel and WAG have avoided such non-deterministic problems, by careful writing of
the lexico-grammatical and interstratal resources. However, this is a case where the
resources are being shaped by the needs of the process, a practice which should be
avoided, if possible, since the resources lose their process-neutrality.

Matthiessen (1988a) proposed one solution which avoids the re-wiring of the
grammar. He proposes a least-commitment strategy -- whenever a grammatical choice
cannot be resolved, then we should make no commitment, but rather postpone the
decision until a later point. There are potentially other grammatical decisions which can
be made without waiting for this one (e.g., simultaneous systems). The system is pushed
to the end of the systems-to-be-resolved queue.

This is a good solution for some cases, since it doesn’ t require any change to the
resources -- only the traversal algorithm is affected. However, the solution cannot be
used in two situations:

1) Inter-Dependency: there may be cases where two decisions depend on each
other. Each decision cannot be resolved until the other decision is resolved.

2) Referent resolved in more delicate system: sometimes the Referent is resolved
in a more delicate system, rather than in a simultaneous system. No amount of
delay will solve the problem.

We could write the resources to avoid these situations (while allowing cases which
could be solved using least-commitment). Alternatively, we could introduce more
complex processes which know how to obtain as needed the information required to
resolve the choices. I will not discuss this further here, except to say that the concept of
‘ look-ahead’ fr om parsing could perhaps be applied profitably.

2. WAG's Generation Process

This section describes the algorithms for sentence generation used in the WAG
system. These algorithms are fairly identical to Penman’s at a gross level, but differ in
the way these steps are implemented. A list of the ways the WAG implementation
improves on the Penman system are given in section 5 below. Note that WAG doesn’ t
include any code from Penman, it is a total re-write.

WAG Generation Manual 26

2.1. The General Algor ithm
WAG’s sentence generation algorithm is shown in figure 10. Each of these steps will

be discussed below.
Micro-Semantic Specification

Pre-Processing of
Micro-Semantic Specification

Bui ld Lexico-Grammatical
Structure

Select Appropriate
Lexical Items

Bui ld Graphological String

Text

Figure 10: The Sentence Generation Algorithm

2.2. Initial Processing of the Input
Before generation begins, the input is processed. This processing involves three

steps:

1. Assertion of the Semantic Specification into the KRS: the input specification
is ‘parsed’ , analysing it in terms of the various roles and fields, and this
information is asserted into WAG’s knowledge-representation system.

2. Deriving Implied Structure: the program derives any additional structural
information it can from the partial specification. For instance,

• Deriving feature information from asserted roles;
• Deriving additional roles from asserted features.

These steps are repeated for each element of the semantic specification, in a top-
down manner, until all roles are processed.

3. Defaulting of Unspecified Choices: After the prior step, there will still be
systems which are unresolved. Some of these systems are defaulted. Only
systems containing features drawn upon in the interstratal mapping constraints
need to be defaulted -- others can be left unspecified. In those systems which are
defaulted, features are chosen arbitrarily,5 except where the user has expressed a
preference (see discussion on feature defaulting above).

The result of the input processing stage is what I term a fully-specified semantic
form. ‘Fully-specified’ refers to the fact that -- in each unit of the semantic

5If no user-default is specified, the program takes the last feature in a system. This is because many systems

have a no-reali sation alternative, and Systemicists tend to place these features last. A more intelli gent program
would automaticall y discover the no-reali sation alternative.

WAG Generation Manual 27

representation -- the features which are relevant for lexico-grammatical processing have
been specified. This is required for deterministic generation, as discussed above.

2.3. Lexico-Grammatical Construction
The goal of the Lexico-Grammatical Construction stage is to build a lexico-

grammatical structure which encodes the semantic input. Section 4.1.2 above compared
two different control strategies for lexico-grammatical construction: source-driven and
target-driven. The WAG system, in common with most Systemic generators, is target-
driven -- the construction is based on expanding the lexico-grammatical representation
(constrained by the micro-semantics), rather than by realising the semantic
representation.

Figure 11 shows the basic algorithm behind lexico-grammatical construction in
WAG. It defines a top-down, breadth-first, left-to-right construction process (see
chapter 9 of my thesis for a description of these terms). In other words, we first build
the structure of the top-most unit (the clause or clause-complex), and then build the
structure of each of the unit’ s constituents, and so on down to word-rank units. This
type of generator can thus be called a ‘rank-descent’ generator.

Push clause unit onto
empty stack

Pop next unit from
stack

Build Current Unit's
Immediate Structure

Push Consti tuents of Current
Unit onto Stack

succeed

succeed

succeed

succeed

fail
End

Figure 11: WAG’s Lexico-Grammatical Construction Process

This algorithm uses a stack data-structure. A stack is a data-structure used for storing
items. It is basically a last-in, first-out queue. You ‘push’ an item onto the stack -- place
an item at the front of the queue. You can push other items on top of this. You can also
‘pop’ an item, meaning that you take the item from the top of the stack. See figure 12.

WAG Generation Manual 28

Uni t

top-of-stack

push pop

 Stack

Uni t

Uni t

Figure 12: The Unit Stack

The stack is used to store the constituents-to-be-processed. The process starts off
with only one element on the stack -- the sentence unit. At this point, the information in
this unit is minimal, just a specification that the unit is a clause6, and a pointer to the
Referent (semantic content) that this clause-unit is expressing.

Processing then begins: the top element is ‘popped’ off the stack, the system network
is traversed to build up its feature-list, and the realisation statements associated with
these features are applied, thus building the immediate structure of the unit.

When the element’s immediate structure is complete, we then need to complete the
structure of each of its constituents. So we push each of these constituents onto the Unit-
Stack, and cycle back to the beginning of the process: pop the next unit off the stack,
process this, and so on.

We continue popping and processing units until there are no units left to process.
This occurs when all constituents of the sentence-tree have been fully specified. We thus
go on to the bubble labelled ‘End’ in figure 11. We are now ready to move onto the next
stage of the generation process -- lexical selection7.

Immediate-Structure Construction: I will now provide more detail about the
immediate-structure building stage of the generation process. Following sections will
focus on two aspects of this stage -- forward-traversal and constituency ordering.

The construction within each unit of the target is resource-driven -- controlled by the
traversal through the system network (from left to right). In each system, the program
chooses a feature whose semantic constraints are compatible with the semantic input.
The structural realisations of this feature are then asserted, and the process advances to
the next enterable system. When all enterable systems are processed at that rank, the
unit is complete. Figure 13 shows the algorithm for generating the immediate structure
of a unit. It is reasonably similar to the flowchart proposed by Matthiessen & Bateman
(1991, p106), but has been developed separately.

6The feature clause leads on to both clause-simplex and clause-complex.

7The lexical selection process could be performed intermixed with the lexico-grammatical construction. If so,
then the processor would then advance to graphological reali sation.

WAG Generation Manual 29

Set *waiting-systems*
list to 'rank-system'

succeed

succeed

succeed

fai l

End

Enter Next System

Advance to Next Feature

Test Feature Against
Preselections

Order Consti tuents

fai l Error

fai l

Test Feature's Semantic
Constraints

Add New Systems to
waiting-systems

Assert Feature's Realisations

succeed

succeed

fail

succeed

succeed

Figure 13: The Immediate-Structure Building Algorithm

A brief summary of each of these steps follows:

1. Set *Waiting-systems* list to ‘ rank-system’ : the variable *Waiting-systems*
contains the list of systems which are waiting for processing, i.e., those systems
whose entry conditions are satisfied at the present point of traversal, but which
have not yet been 'entered' (no feature has been selected as yet).

2. Enter next system: The next system from the *Waiting-systems* list is
retrieved, becoming the *current-system*. At this point, the features of the
system are ordered by various means.

a) Initial ordering: Internally, the features of a system are ordered as they
appear in the system definition. The user can set a variable * feature-
selection-mode* which will change this default ordering in two ways:

• Reverse-order: the list of features is reversed before further processing.
This is useful for sentence generation, since the last feature in a system is
usually the one with no realisation attached.

• Random-order: the list of features is jumbled.

b) Preferential ordering: The user can specify a li st of ‘ preferred features’ --
features that will be considered before any other features. These preferred
features are put at the front of the list resulting from (a) above.

3. Advance to next feature: the next feature from the system is selected. If there
are no more features in the system (no valid alternatives), then processing fails -
- either the resources contain inconsistencies, or we have reached a generation
gap.

4. Test feature against preselections: the feature is tested against the
preselections for this unit. If the feature is consistent with the preselections,
processing continues, else the process returns to (3) to try another feature from
the system.

WAG Generation Manual 30

5. Test feature’s semantic constraints: the feature’s selection constraint (see
chapter 6 of my thesis on inter-stratal mapping) is tested, and if it is consistent,
it is chosen, otherwise the process goes back to try another feature from the
system.

6. Assert feature realisations: the realisations of the feature are asserted, with the
exception for the :order and :partition rules, which are stored for later
application. These realisations are applied at the end of the traversal, when we
know which roles conflate, which are presumed, and which of the optional roles
were actually inserted. If the assertion of the realisations fails (the realisations
are inconsistent with grammatical information from other features), an error is
signalled. This should not happen as Systemic grammars should be so
constructed in a way that any legal combination of features is realisable.

7. Add new systems: The program checks for any systems which become
enterable with the addition of the chosen feature. These systems are added to the
Waiting-systems list. Penman and WAG both keep a list, for each feature, of
the entry-conditions which the feature appears in. Thus, after selecting a feature,
we do not need to check all systems to see if they have become enterable, but
only those on this li st. Also, any systems which have already been entered are
automatically ignored.

8. Order constituents: When all systems have been processed, the sequence rules
(order and partition) are processed, placing the units in their surface ordering.
See section below for more details.

Forward-Traversal Algor ithms: I have outlined Systemic generation as forward-
traversal through the system network. If there were no simultaneous systems in a system
network, traversal would be a simple matter of selecting a series of features in a single
path from root to leaf. However, networks allow simultaneous systems, so the order in
which systems are processed is not totally determined. Simultaneous systems can be
entered in any arbitrary order. This gives rise to two alternative strategies for network
traversal:

1) Depth-first: The systems which extend from the last selected feature are
processed before simultaneous systems. Traversal follows one branch of the
network to the leaves before exploring others. Depth-first traversal is achieved
by placing newly activated systems at the front of the *waiting-systems* list, so
that they will be processed first.

2) Breadth-first: Systems at the same systemic depth are processed before the
systems which depend on them. Breadth-first traversal is achieved by placing
newly activated systems at the end of the *waiting-systems* list, so that they
will be processed last. Systems which were already on the list represent
simultaneous systems, and they will be processed first.

The choice between these strategies doesn’ t affect processing eff iciency, since all
entered systems have to be processed anyway. The order of entry should not affect the
results of the generation process.

Sequencing of Constituents: This section describes the algorithm used to sequence
grammatical constituents in the WAG generator. It represents a very succinct method
for sequencing units systemically. Sequencing is applied after the traversal is complete,
since it is only at this point that we can be sure which of the elements marked as
optional are actually included, and also which functions conflate together.

WAG Generation Manual 31

The WAG formalism uses two sequence operators:

• order: indicates absolute ordering (adjacency), e.g., (:order A B C) indicates
function A immediately precedes function B, which immediately precedes
function C.

• partition: indicates relative ordering, e.g., (:partition A B) indicates function A
precedes function B, but not necessarily adjacently.

Two other aspects need to be discussed:

• Optionali ty: Elements of a sequence rule can be optional (need not actually
occur in the final structure). Optional elements are designated by being
parenthesised, e.g., (:order Subject Finite (Negator)).

• Front & End: The sequencing of a unit in relation to the front and end of the
grammatical unit can be indicated by inclusion of pseudo-functions 'Front' and
'End' in the sequence rule, e.g., (:order Front Subject), (:order Punctuation
End).

To exempli fy the processing, I will assume a clause which, after all systems are
entered, has the following sequence rules:

Order : Punct ^ End;
Pred ^ Object;
Subject ^ Finite ^ (Negator)

Partition : (Modal) # (Perf) # (Prog) # (Pass) # Pred

1. Sequence Rule Preparation: The order and partition rules are standardised through
three steps:

a) Removal of optional elements: the order/partition rules may contain optional
elements. Any optional element which is not present in the structure is removed
from the rule. The sequence rules shown above simpli fy to those below:

Order : Punct ^ End;
Pred ^ Object;
Subject ^ Finite

Partition : Modal # Pred

b) Standardisation of Role-Labels: Each constituent may have multiple role
labels (due to conflation). Different rules may refer to one constituent using
different role labels, e.g., assuming that Finite and Modal are conflated, then the
final two sequence rules in the set from above contain references to one unit
using different role-names. The order/partition rules are standardised so that
only one role per role-bundle is used.

Order : Punct ^ End;
Pred ^ Object;
Subject ^ Finite

Partition : Finite # Pred

c) Spli tt ing into two-element rules: Each sequencing of more than two elements is
split i nto a number of binary sequencers. The rules of this example are all binary
after the elimination of the optional elements, but this is not always the case. For
example:

WAG Generation Manual 32

 Finite # Prog # Pred => Finite # Prog; Prog # Pred

2. Processing of Sequence Rules

To merge the information contained in these sequence-rules, an ordering graph is
used -- a data-structure which represents the ordering between any pair of elements. The
sequencing rules are applied to the graph one at a time, as shown in the following
example.

a) Initial State: The units start out unordered in respect to each other, but ordered
in respect to the front (FRONT) and end (END) of the unit, as demonstrated in
figure 14(a). In these ordering graphs, a continuous line between roles indicates
adjacency, a line broken by a || indicates that other elements may intercede
(partitioned).

b) Order Cycle: Each order rule is applied in turn. The successive effect on the
order graph is shown in Figure 14(b-d).

c) Partition Cycle: Each partition rule is then applied. Figure 14(e) shows the
application of the one partition in this example.

d) Reading off t he Sequencing: After all the sequence rules are applied, we can
read off the sequencing from the graph. In most cases, there is only one path
through the graph. However, in some situations, sequence is not totally
determined, and alternative orderings may be possible (for instance, the WAG
grammar does not totally determine the sequence of multiple Circumstances, or
nominal Quali fiers). In such cases, the process just takes the first ordering
alternative.

a) The initial state of the order graph

End

Subj

Pred

Fin

Punct

Object

Front

b) After applying Punct ^ End

Front EndPunct

Subj

Pred

Fin

Object

c) After applying Pred ^ Object

End

Subj

FinFront Punct

ObjectPred

d) After applying Subj ^ Fin

End

Subj

Front Punct

ObjectPred

Fin

e) After applying Fin # Pred

EndFront PunctObjectPredSubj Fin

Figure 14: Successive States of the Order Graph

WAG Generation Manual 33

2.4. Lexical Selection
In Penman’s lexical selection algorithm, semantic filtering is applied first: the

semantics provides the set of candidate lexemes which express the ideational type of the
referent. These candidates are then filtered grammatically, and one of the remaining
candidates is chosen:

"Abstractly, there are two ways in which sets of candidate lexical items are
constrained and denotational appropriateness is the first kind of constraint applied.
Then grammatical constraints -- such as the requirement that the lexical item be an
en-participle -- are used to filter the set of denotationally appropriate terms."
(Matthiessen 1985).

The WAG system filters on grammatical grounds first. As a general case, I believe
that the Penman approach (semantic filtering first) is best. However, for a variety of
reasons, lexical selection in WAG is quickest when grammatical filtering is performed
first. This is true particularly for closed-class lexical-items (pronouns, prepositions,
conjunctives, verbal-auxili aries, etc.), of which most can be totally resolved through
grammatical selection only. Even for open class items, grammatical filtering seems to
be quicker.

However, as the size of the lexicon grows, starting with semantic filtering will no
doubt prove more eff icient. it would also be useful i f we cold identify, a priori, whether
a particular item was fill ed by an open-class or a closed class item. We could perform a
semantics-first filtering for open-class items, and a grammar-first filtering for closed-
class items. Unfortunately, it is diff icult to specify exactly what grammatical classes are
open- or closed-class, especially since it is our policy not to build any resource
information into the program itself.

The Penman system associates each lexeme with a single ideational feature (or
concept in Penman's terms). The WAG system overcomes this limitation, allowing each
lexeme to be associated with a set of ideational features. For instance, to specify the
semantics for the word "woman", Penman would need to create an ideational feature
woman, which inherits from both female and adult.8 In the WAG system, we can
specify that the lexeme's semantics is (:and female adult), avoiding the need to create a
new concept for each combination of features.

2.5. Text and Speech Output
The sentence generator can produce either text (a graphologically formatted

sentence), or speech output.

1. Text Output: The text output is derived from the lexico-grammatical structure
(including lexical items) constructed during the prior stages. The mappings
between lexico-grammatical and graphological form are not stated declaratively
-- they are encoded in the lexico-grammar-to-text procedure. These resources
will eventually be declarativised. The graphological string is derived as follows:

a) the lexical items are extracted from the leaves of the lexico-grammatical
tree, in order of occurrence from left to right.

8It is not necessary to specify the feature human, since female in the Penman Upper Model inherits from

human.

WAG Generation Manual 34

b) an appropriate graphological form is generated for each lexeme, given its
inflection feature.

c) the left-most graphological form is capitalised.

d) Spacing: a space character is placed between each graphological form. Some
punctuation symbols modify this rule:

No space before: . , ; ? ! ' " (close quotes)

No Space after: ' " (open quotes)

2. Speech Output: If the speech-output option is selected, the WAG system speaks
the generated sentence using the Macintosh Speech Manager (a text-to-speech
program). WAG will check the designated gender of the ‘Speaker’ role of the
input specification, and choose a voice appropriately.

Chapter 5

Comparison With Penman

In building the generation component of WAG, I have borrowed strongly from
Penman’s general architecture. However, I have attempted to correct many of the short-
comings in the Penman system. Note that WAG uses none of Penman’s code.

1. Similar ities to Penman

The areas in which WAG has borrowed from Penman are:

1) Grammar-dr iven control: WAG uses Penman’s grammar-driven control
strategy, in common with the majority of Systemic generators.

2) Traversal Algor ithm: The WAG traversal algorithm is similar to Penman's,
although the choosing of features in a system is different in WAG - based on
evaluating feature selection conditions, rather than traversing a chooser-tree.

2) Upper Modelli ng: Penman's Upper Model is the basis of WAG's ideational
representation, although WAG's Upper Model is represented as a system
network, rather than as a LOOM inheritance network. WAG has also adopted
Penman's means of handling domain knowledge - subsuming domain concepts
under upper-model concepts rather than relating them directly to the lexico-
grammar (see chapter 3 of thesis).

3) Resource Definition and Access: For reasons of resource-model compatibilit y
between Penman and Nigel, WAG accepts system definitions in Penman's
format, and can export to this format (although a modified format is preferred
for WAG). Many of WAG's resource-access functions (functions for accessing
the stored Systemic resources) are named identically to Penman's, although the
internal storage of the resources is different. This has been done for code
compatibilit y reasons.

WAG Generation Manual 35

2. Differences from Penman

WAG improves on Penman in several directions:

1. Input Specification: WAG’s semantic specification form is not dissimilar to
Penman’s input form -- Sentence Plan Language (SPL) -- except for several
improvements. In summary, these are:

a) Extended and linguistically-based speech-act network: the speech-act
network has been extended to handle a wider range of speech-acts. The
speech-act categories rest on a firm theoretical basis in the Berry-Martin
tradition.

b) Treatment of proposition as par t of speech-act: The relation of
propositional content to speech-act was rather ad-hoc in Penman, where the
speech-act was tacked on to the proposition to be expressed. Speech-function
seems to have been added on as an afterthought to an originally declarative-
only system. In the WAG system, the relationship has been clarified, with
the propositional content being treated as a role of the speech-act to be
expressed.

c) Generation directly from KB: WAG allows sentence-specifications to
include just a pointer into the KB, while Penman requires an ideational
structure to be specified within each sentence-specification.

d) Designation of Wh-element in elicitations: it is diff icult to designate the
element which should be the wh-element of a question in Penman, the user
needs to directly specify the answer to an identification inquiry, a process
which involves some knowledge of the internal working of the Penman
system. WAG allows the user to designate the wh-element (the Required
element) in the input specification, in a simple, theoretically-based manner.

e) Extended textual specification: WAG has extended the range of textual
specification possible in the input form. This includes the recoverabilit y,
identifiabilit y, and relevance of entities. To match these features in SPL, the
user needs to include inquiry preselections -- forced responses to Penman’s
inquiries -- a rather low-level approach.

f) Complex ideational feature specifications: In Penman, each ideational unit
can have only a single feature (e.g., ship), or at most a conjunction of
features. WAG allows the user to specify the type of semantic unit using any
logical combination of features, using conjunction, disjunction or negation.

2. Interstratal Mapping: Penman's chooser-inquiry interface has proven
problematic for two reasons:

a) The chooser-inquiry interface is partially procedural, and thus not re-usable
for analysis. The WAG system has replaced the chooser-inquiry interface
with a declarative mapping system (following Kasper's approach), used for
both analysis and generation.

b) When extending Penman's resources to generate new sentences, it is often
diff icult to work out what input specification is necessary to get a particular
lexico-grammatical form. The main reason for this is the need to work on
four levels of representation:

• Upper-model concepts and structures

• Inquiry specifications

WAG Generation Manual 36

• Chooser Trees

• The System Network

The WAG system simpli fies the mapping process by mapping directly from
grammatical features to upper-model concepts. It is thus easier to discover
what input specification is needed to produce a particular lexico-grammatical
structure.

3. Structure Building: WAG improves on Penman's structure building in several
ways:

a) Conciseness: The Penman code for lexico-grammatical construction is quite
long and involved, having been developed by several programmers over ten
years. Some parts are diff icult to penetrate, even by those who maintain it.
The WAG system has the advantage of being designed rather than evolved,
and takes advantage of the progress made in Penman. It has also been
implemented by a single programmer, so is more highly integrated.

b) Sequencing: The Penman formalism system uses four sequencing operators
(order, partition, order-at-front, order-at-end). However, most ordering is
actually derived from a set of default ordering rules. These default orderings
are not part of the Systemic formalism, but rather an ad-hoc extension.
Penman's sequencing information is not suff icient for parsing, since the
resources provide mostly default ordering, rather than all possible orderings.

The WAG system has extended the sequencing formalism to allow optional
elements in sequence rules. All ordering in the WAG grammar is done
without the default ordering resource. The WAG grammar is thus suitable
for parsing as well as generation.

c) Proper handling of disjunctive preselections: Penman does not handle
preselections properly where the preselection includes some disjunction. The
WAG system corrects this problem.

d) Use of a generalised KRS: The Penman system has specialised code for
dealing with realisation rules. All of WAG's processing is based on top of
WAG's KRS, which is used for asserting realisation statements during
generation or parsing, for asserting or testing feature selection conditions,
and for asserting knowledge into the knowledge-base.

4. Lexical Selection: The Penman system associates each lexeme with a single
ideational concept. The WAG system overcomes this limitation, allowing each
lexeme to be associated with a set of ideational features.

5. Lexical network into system network: In Halli day's Systemic grammar,
lexical features are organised under the lexico-grammar system network - the
word-rank sub-network. Penman does not follow this approach.9 For generation
purposes, the lexical features are not organised in terms of a network, and
Penman cannot check on the inheritance relations between lexical features. The
features are organised into an inheritance network only for lexical acquisition
(see Penman Project 1989), and this information is organised in a Loom
inheritance network, rather than as part of the Nigel lexico-grammatical
network. The WAG system incorporates the lexical features into the lexico-

9John Bateman has a version of Penman which partiall y corrects this problem.

WAG Generation Manual 37

grammatical network, under the word feature. This resource is used in
processing to test compatibilit y of lexical features.

6. Single formalism for all l evels: The WAG system uses the same knowledge
representation system for all structural representation, including the internal
representation of the semantic input (speech-act and ideational content) and
lexico-grammatical form. Penman has two systems - Loom is used to represent
knowledge, and Penman provides its own internal knowledge representation
system for representing lexico-grammatical structures.

3. Summary

While the WAG generator has only been under development for a few years, and by
a single author, in many aspects it meets, and in some ways surpasses, the functionality
and power of the Penman system, as discussed above. It is also easier to use, having
been designed to be part of a Linguist’s Workbench -- a tool aimed at linguists without
programming skill s.

The main advantage of the Penman system over the WAG system is the extensive
linguistic resources available. While the WAG system can work with the Nigel grammar
at least in the lexico-grammar, I have not yet connected Nigel to the micro-semantics, so
semantic generation using Nigel is not yet possible. The writing of appropriate feature
selection-constraints is a task for future development.

WAG Generation Manual 38

Appendix A: Example Semantic Forms

Below I provide examples which demonstrate how particular grammatical forms can
be achieved. These all assume the Dialog resource model is loaded.

As stated in section 2.2 above, WAG has two generation modes:

• *Clear-KB-on-Say* = t : the knowledge base (KB)is cleared between each
'say', allowing successive say-forms to refer to the same instances without
causing inconsistencies to arise if these instances are assigned different
structure.

• *Clear-KB-on-Say* = nil : the KB is not cleared between successive say-
forms. This allowing successive say-forms to express different subsets of the
KB, or allows each evaluated say-form to add information to the KB.

This toggle can be set by selecting Preferences... from the Generation menu.
Alternatively, evaluate the following lisp expression before evaluating the say-forms:

(setq *Clear-KB-on-Say* t)

The first set of examples will assume the first mode. Set the mode appropriately.

The examples from this section can be found in the file: Demos:Generation
Demos:Manual Examples .

1. A Simple Utterance

For a simple utterance, we need provide only the speech-act and a proposition:

(say example-1
 :text "A man goes to a city."
 :is propose
 :proposition (P1 :is (:and motion-process origin-perspective)
 :actor (Mark :is (:and male adult))
 :Destination (Sydney :is city)))

2. Changing Tense

We can add a tense-choice to the speech-act specification:
(say example-2
 :text "A man went to a city."
 :is (:and propose simple-past)
 :proposition (P1 :is (:and motion-process origin-perspective)
 :actor (Mark :is (:and male adult))
 :Destination (Sydney :is city)))

(say example-3
 :text "A man will have gone to a city."
 :is (:and propose future-perfect)
 :proposition (P1 :is (:and motion-process origin-perspective)
 :actor (Mark :is (:and male adult))
 :Destination (Sydney :is city)))

WAG Generation Manual 39

The tense possibiliti es are:
simple-past: I went.
simple-present: I go.
simple-future: I will go.
past-perfect: I had gone.
present-perfect: I have gone.
future-perfect: I will have gone.

These tense features have no theoretical status, existing only to make semantic
specificatione easier, as discussed in section 6.2 above. Tense can be specified directly
using the constraint field, which is useful when the event-times of processes are already
defined in the KB. For example:

(say example-4
 :text "A man had gone to a city."
 :is propose
 :proposition (P1 :is (:and motion-process origin-perspective)
 :actor (Mark :is (:and male adult))
 :Destination (Sydney :is city))
 :constraint (:and (< Reference-Time Speaking-Time)
 (< Proposition.Event-Time Reference-Time)))

3. Progressive Aspect

To generate progressive aspect, include continuing-event in the speech-act
specification:
(say example-5
 :text "A man was going to a city."
 :is (:and propose simple-past continuing-event)
 :proposition (P1 :is (:and motion-process origin-perspective)
 :actor (Mark :is (:and male adult))
 :Destination (Sydney :is city)))

4. Referr ing To Entities

Given certain additional information, WAG will automatically select a particular way
to refer to each semantic entity. The various means for controlli ng the this expression
are shown below.

4.1 Identifiabili ty
When a participant is part of the shared knowledge between the speaker/hearer (or

the speaker believes such), then the speaker can refer to that entity using identifiable-
reference, e.g.,

• Definite Deixis: The boy

• Naming: John (if the name is known)

 Otherwise indefinite deixis (a boy, some boys) is used.

Identifiabilit y is marked by including the unit-id of the identifiable entity in the
:identifiable-entities field of the say-form. Entities are assumed to be unidentifiable
unless included in this field. The exception to this is that recoverable entities (see
below) are assumed identifiable. Refer to chapter 5 of my thesis.

WAG Generation Manual 40

(say example-6
 :text "The man went to the city."
 :is (:and propose simple-past)
 :proposition (P1 :is (:and motion-process origin-perspective)
 :actor (Mark :is (:and male adult))
 :Destination (Sydney :is city))
 :identifiable-entities (Sydney Mark))

If the name is known, it is used (for exceptions, see under relevance below).

(say example-7
 :text "Mark went to Sydney."
 :is (:and propose simple-past)
 :proposition (P1 :is (:and motion-process origin-perspective)
 :actor (Mark :name "Mark")
 :Destination (Sydney :name "Sydney"))
 :identifiable-entities (Sydney Mark))

4.2 Recoverabili ty
Shared information which has already been introduced to the discourse, or is part of

the immediate environment (e.g. the speaker or hearer), is called recoverable
information. Recoverable information can be referred to using pronouns. Other forms of
identifiable reference are also appropriate (see chapter 5 of my thesis).

Recoverabilit y is marked by including the unit-id of recoverable entities in the
:mentioned-entities field of the say-form:

(say example-8
 :text "He went to here"
 :is (:and propose simple-past)
 :proposition (P1 :is (:and motion-process origin-perspective)
 :actor (Mark :is (:and male adult))
 :Destination (Sydney :is city))
 :mentioned-entities (Sydney Mark))

Note: He came here. would be the preferred generation. This is an issue for future
work.

4.3 Speaker and Hearer Roles
If a participant in the proposition has the same unit-id as the fill er of the speaker or

hearer role, then the participant will be lexicalised appropriately, e.g., "I", "my" etc.
(say example-9
 :text "I went to your city"
 :is (:and propose simple-past)
 :speaker (Mark :is (:and male adult))
 :hearer (Mary :is (:and female adult))
 :proposition (P1 :is (:and motion-process origin-perspective)
 :actor Mark
 :Destination (Sydney :is city
 :owner Mary)))

WAG Generation Manual 41

5. Changing the Theme

The user can specify which entity is to be the theme of the utterance, by including a
:theme role in the say-form. Theme is by default the Agent (Actor, Senser, Sayer, etc.)
of the process. See Chapter 5 of my thesis for more details.

Nominating a Medium (Actee, Phenomenon, Verbiage, etc.) as Theme will force a
passive sentence. Nominating a Circumstance as Theme will front that Circumstance.

(say example-10
 :text "Mary was sent by me to Sydney."
 :is (:and propose simple-past)
 :speaker (Mark :is (:and male adult))
 :proposition (P1 :is sending-process
 :actor Mark
 :actee (Mary :name "Mary")
 :Destination (Sydney :name "Sydney"))
 :theme Mary
 :identifiable-entities (Sydney Mary))

To generate an Agentless passive, do not include the :actor role in the say-form, as
in example 11 below (alternatively, see the discussion of relevance below). In such
cases (no Agent is contained in the expression), a passive form will result automatically,
so the :theme field is not necessary.

(say example-11
 :text "Mary was sent to Sydney."
 :is (:and propose simple-past)
 :proposition (P1 :is sending-process
 :actee (Mary :name "Mary")
 :Destination (Sydney :name "Sydney"))
 :theme Mary
 :identifiable-entities (Sydney Mary))

Specifying the head of a circumstantial role as theme will t hematicise that role, as
shown in example 12:

(say example-12
 :text "To your city, I sent John"
 :is (:and propose simple-past)
 :speaker (Mark :is (:and male adult))
 :hearer (Mary :is (:and female adult))
 :proposition (P1 :is sending-process
 :actor Mark
 :actee (John :name "John")
 :Destination (Sydney :is city
 :owner Mary))
 :theme Sydney
 :identifiable-entities (John))

It might be desired to produce something of the form Sydney is where I sent John. At
present, WAG cannot handle themes being specified below the top level of the
proposition. This sentence can however be achieved using a say-form using an
identifying-relation.

WAG Generation Manual 42

6. Varying The Speech Act

Chapter 4 of my thesis sets out the various speech-acts which are possible in the
WAG system. The range of speech-acts are represented in figure 15.

el ici t

propose

support

deny-knowledge

contradict

request-repeat

el ici t-polarity

el ici t-content

SPEECH
FUNCTION

OBJECT OF
NEGOTIATION

action-negotiating

information-negotiating

TURN
MANA GEMENT

keep-turn

pass-turn

negotiatory

salutory

greet

farewell

thank

ini tiate

respond

INITIATION

SPEECHACT
TYPE

speech-act

Figure 15: The Speech-act Network

6.1 elicit-polar ity

(say example-13
 :text "Is Mark going to Sydney?"
 :is (:and elicit-polarity continuing-event)
 :proposition (P1 :is (:and motion-process origin-perspective)
 :actor (Mark :name "Mark")
 :Destination (Sydney :name "Sydney"))
 :identifiable-entities (Sydney Mark))

6.2 elicit-content
The Wh- element is specified by including its unit-id in a :required field:

(say example-14
 :text "Where is Mark going?"
 :is (:and elicit-content continuing-event)
 :proposition (P1 :is (:and motion-process origin-perspective)
 :actor (Mark :name "Mark")
 :Destination (L1 :is 2d-spatial-object))
 :identifiable-entities (Mark)
 :Required L1
 :Theme L1)

WAG Generation Manual 43

(say example-15
 :text "Who is going to Sydney?"
 :is (:and elicit-content continuing-event)
 :proposition (P1 :is (:and motion-process origin-perspective)
 :actor (X :is human)
 :Destination (Sydney :name "Sydney"))
 :identifiable-entities (Sydney)
 :Required X
 :Theme X)

6.3 Proposing in response to an elicitation
Following an elicitation, the speaker need only supply the element which was

elicited. The say-form can specify which element was Required, using a :elicited field,
containing the unit-id of the element that was required in the prior elicitation.

(say example-16
 :text "Sydney."
 :is (:and propose required-only)
 :proposition (P1 :is (:and motion-process origin-perspective)
 :actor (John :is human)
 :Destination (Sydney :name "Sydney"))
 :identifiable-entities (Sydney)
 :Elicited Sydney)

6.4 Imperative (negotiate-action)
The prior examples have all defaulted to negotiate-information (producing

interrogatives and declaratives). Example 17 shows an action-negotiating move.

(say example-17
 :text "Go to Sydney!"
 :is (and propose negotiate-action)
 :hearer (Mark :is (:and male adult))
 :proposition (P1 :is (:and motion-process origin-perspective)
 :Actor Mark
 :Destination (Sydney :name "Sydney"))
 :identifiable-entities (Sydney))

6.5 Other Responding Moves

(say example-18
 :text "Sorry?"
 :is request-repeat)

Not yet working:
(say example-19
 :text "No."
 :is contradict)

(say example-20
 :text "Yes."
 :is support)

(say example-21
 :text "I don't know."
 :is deny-knowledge)

WAG Generation Manual 44

6.6 Salutary Moves
Since the sentence generator has been designed to operate in a interactive dialogue

environment, salutary moves are also possible (e.g., "hello", "goodbye", "thank you").
(say example-22
 :text "Good Morning."
 :is temporal-greeting)

(say example-23
 :text "Thank you."
 :is (:and initiate thank))

(say example-24
 :text "You're welcome"
 :is (:and respond thank))

(say example-25
 :text "Good bye."
 :is farewell)

7. Controlli ng Modali ty

Modality is stated as a role of the proposition. The role is fill ed by a modal-quality,
which requires the specification from two systems: Voliti onality (voliti onal vs.
nonvoliti onal), and Conditionality (conditional vs. nonconditional). Nonvoliti onal
modality has three sub-types: necessity, possibilit y and abilit y. The lexification of these
types is shown below (negated forms not shown):

nonconditional conditional

voli tional will would

necessity must might

nonvoli tional possibili ty can, may could, might

abili ty can could

Table 1: The Modal Semantics

 This modal system is borrowed from Penman's Upper Model.

(say example-26
 :text "Can I help you?"
 :is elicit-polarity
 :speaker (Operator :is human :number 1)
 :Hearer (Caller :is human)
 :proposition (P3
 :is (:and help-action dispositive)
 :actor Operator
 :actee Caller
 :modality (M3 :is (:and ability
 nonconditional)))
 :theme Operator
 :relevant-entities (Operator Caller))

WAG Generation Manual 45

8. Varying the Process Type

Halli day classifies processes into material, mental, verbal, relational, behavioural and
existential. The Upper Model (and thus WAG) uses all of these categories except for
behavioural. This section will demonstrate the generation of various process types.
Materials have already been demonstrated, so I will not show them again.

8.1 Material Processes

8.1.1 Simple Material

8.1.2 Ditransitive Processes

Active: mary gave a book to John.

Recipio-Passive: John was given a book by Mary.

Medio-Passive: A book was given by Mary to John.

8.2 Verbal Processes
Note that there is at present no way to directly specify the tense of the projected

clause.

(say example-27
 :text "John said Mark was going to Sydney."
 :is (:and propose simple-past)
 :proposition
 (P1 :is nonaddressee-oriented
 :Sayer (John :name "John")
 :Saying (P2 :is (:and motion-process origin-perspective)
 :actor (Mark :name "Mark")
 :Destination (Sydney :name "Sydney")
 :Constraint
 (:and (< Event-Time.Start
 Speech-Act.Reference-Time)
 (> Event-Time.End
 Speech-Act.Reference-Time))))
 :identifiable-entities (Mark John Sydney))

(say example-28
 :text "John told Mark to go to Sydney."
 :is (:and propose simple-past)
 :proposition (P1 :is addressee-oriented
 :Sayer (John :name "John")
 :Addressee (Mark :name "Mark")
 :Saying (P2 :is (:and motion-process
 origin-perspective)
 :actor Mark
 :Destination (Sydney :name "Sydney")))
 :identifiable-entities (Mark John Sydney)
 :prefer (finite conjuncted))

8.3 Mental Processes
I thought that John was coming.

I believed John to be coming.

I wanted to come.

WAG Generation Manual 46

8.4 Relational Processes

8.5.1 Possession

8.5.2 Att r ibution

8.5.3 Identity

9. Types of Circumstances & Quali ties

10. Clause Complexes

Most cases which Halli day calls a clause-complex, the WAG grammar models as a
clause with clausal adjunct, e.g., the following sentence:

I will go when you go.

 ...consists of a main clause: I will go, and a circumstantial adjunct: when you go.

[GRAPH THIS]

(say example-29
 :text "If Mark goes to Sydney, I will eat my hat."
 :is (:and propose simple-present)
 :speaker (Jim :is (:and male adult))
 :proposition (P1 :is condition
 :Head (P1a :is eat
 :actor Jim
 :actee (h1 :is hat-object
 :owner Jim))
 :Dependent (P1b :is origin-perspective
 :actor (Mark :name "Mark")
 :Destination (Sydney :is city
 :name "Sydney")
)))

WAG Generation Manual 47

DIAGRAM of GRAMMATICAL STRUCTURE

11. Grammatical Metaphor

The following examples are stored in file Demos: Generation Demos: Gram-
Metafor. These examples require *Clear-KB-on-Say* set to nil . See the instructions at
the beginning of this appendix.

; Stop the KB being reset on each say
(setq *Clear-KB-on-Say* nil)
(setq *Time-Says* nil)

;;; DECLARE THE KNOWLEDGE BASE
;participants
(progn (clear-worlds)

 ; Participants
 (tell John :is male :name "John")
 (tell Mary :is female :name "Mary")
 (tell Party :is spatial)

 ;Processes
 (tell arrival
 :is motion-termination
 :Actor John
 :Destination Party)

 (tell leaving
 :is motion-initiation
 :Actor Mary
 :Origin Party)

 ;relations
 (tell causation
 :is causative-perspective
 :head arrival
 :dependent leaving)

 (complete-the-structure 'causation)
)

(say gramm-met1
 :text "Mary left because John arrived."
 :is (and propose simple-past)
 :proposition leaving
 :relevant-entities (John Mary arrival leaving causation)
 :identifiable-entities (John Mary))

(say gramm-met2
 :text "John's arrival caused Mary to leave."
 :is (and propose simple-past)
 :proposition causation
 :relevant-entities (John Mary arrival leaving causation)
 :identifiable-entities (John Mary)
 :prefer (nominal-subject active-indirect-agent))

WAG Generation Manual 48

(say gramm-met3
 :text "I saw the phoning"
 :is (:and initiate propose simple-past)
 :speaker (Caller :is male :number 1)
 :proposition (P1 :is (:and perception mental-active)
 :senser Caller
 :phenomenon
 (I1 :is phoning
 :actor (John :name "John")
 :polarity (P2 :is positive))
 :identifiable-entities (John P1 phoning Mary))

12. Content Selection

Relevance

WAG Generation Manual 49

Appendix B

Useful Functions

1. Introduction

This appendix outlines the lisp functions which can be accessed to drive generation
from other processes, for instance, in a multi -sentential gneration system.

• Say (macro)
Description: This is the main form for generating sentences.

Arguments: name &rest Keys

 where Keys can be any shown in Table 2 below.

Key Value Description

:is
feature-struct

Sets the the speech-act of the utterance to
the logical expression. Other aspects, such
as tense and aspect, can also be set through
here. When absent, defaults to propose.

:speaker

unit-id or
unit-definition

Either the unit-id of the entity in the KB
which is the speaker, or a unit-definition
(Optional). This role needs only be
provided if you need to refer to the
speaker in the proposition, or for voice
selection in text-to-speech.

:hearer

unit-id or
unit-definition

Either the unit-id of the entity in the KB
which is the hearer, or a unit-definition.
(Optional). This role needs only be
provided if you need to refer to the hearer
in the proposition, or for voice selection in
text-to-speech.

:proposition
unit-id or

unit-definition

Either a definition of the proposition, or
the unit-id of the semantic head of the
proposition to be expressed. See chapter 2,
section 3 above.

:relevant-roles
list of

(unit-id Role1 Role2...)

This list contains, for each entity in the
proposition, the roles which are relevant
for expression. Only of use when
generating from a pointer into the KB.

WAG Generation Manual 50

:theme
unit-id

The ideational entity which the speaker
wishes thematicised (for English, this
means fronted position).

:identifiable-
entities list of unit-id

List of entities which the speaker assumes
known to the hearer, thus allowing definite
reference, e.g., the President.

:mentioned-entities
list of unit-id

List of ideational entities which have
already been mentioned in the discourse,
which allows pronominalisation to be
used.

:elicited-entities
list of unit-id

List of the entities which are being elicited
in an elicit-content move. Typically a
single element.

:prefer
list of feature

List of features which will become the
default during generation. These can be
ideational, speech-act, or grammatical
features.

:fronted list of roles When the grammar inadequately
constrains the ordering of grammatical
roles, this li st is referred to in order to
order them.

:text
string

The text which the say-writer expects to be
generated. Not used in the generation
process. Provided purely to remind us
what it is supposed to do.

:comment
string

Any comments you choose to associate
with the form. This field can occur several
times, although all are ignored in
generation.

Say-Example

Generating Directly.
Your multisentential text generator might wish to maintain the the various discourse

history variables as part of its own workings. In that case, the say-example for may be
too verbose. Below we outline how to duplicate the effects of this function:

1. Maintaining Var iables

Var iable Use

* identifiable-entities* Maintain this li st as

*mentioned-entities

elicited-entities

WAG Generation Manual 51

temp-preferred-features Place any features you want as the default temporarill y
on this li st. This can be used, for instance, to force a
particular referential expression out of the generator.
For permanent defaults, push the element onto the
preferred-features li st.

* fronted-units*

* relevant-roles*

gen-display-mode

speech-act

* top* When generation completes, this variable will hold a
pointer to the top of the grammatical structure. Not
settable by user.

 (if *Clear-KB-on-Say*

 (clear-worlds)

 (in-world 'world1))

 (setq *speech-act* Name)

 (tell -1 name example-args)

 (complete-the-structure name)

 (setq *control-strategy* :target-driven)

 (setq *top* (my-intern (append-strings (string Name) "-lxg")

 (symbol-package Name)))

 (generate-utterance * top*)))

2. Calli ng The Generator.

(defun say-example (Name example-args)

 (let ((target-text (getf&remf example-args :text)))

WAG Generation Manual 52

Bibliography

Haruno, Masahiko, Yasuharu Den & Yuji Matsumoto 1993 “Bidirectional Chart
Generation Algorithm”, Proceeedings of the 4th European Workshop on Natural
Language Generation, Pisa, Italy.

Hovy, Eduard 1993 “On the Generator Input of the Future”, in Helmut Horacek &
Michael Zock (eds.), New Concepts in Natural Language Generation: Planning,
Realisation and Systems, London: Pinter, pp283-287.

Mann, Willi am C. & Christian Matthiessen 1985 “Demonstration of the Nigel Text
Generation Computer Program”, in Benson & Greaves (eds.), Systemic Perspectives
on Discourse, Volume 1. Norwood: Ablex, pp50-83.

Mann, Willi am C. 1983 “An Overview of the Penman Text Generation System”,
USC/ISI Technical Report RR-84-127.

Matthiessen, Christian & John Bateman 1991 Text Generation and Systemic Functional
Linguistics: Experiences from English and Japanese, London: Pinter Publishers.

Matthiessen, Christian 1985 "The systemic framework in text generation: Nigel", in
James Benson & Willi am Greaves (eds.) Systemic Perspectives on Discourse:
Selected Theoretical Papers from the 9th International Systemic Workshop, Norwood,
N.J.: Ablex.

Matthiessen, Christian 1988a Text-generation as a linguistic research task, UCLA Ph.D.
Dissertation.

Meteer, M. 1990 The “Generation Gap”: the problem of Expressibilit y in Text Planning,
Ph.D. Thesis, Computer and Information Science Department, University of
Massachusetts.

O'Donnell , Michael 1994 Sentence Analysis and Generation: A Systemic Perspective.
Ph.D. Dissertation, Dept. of Linguistics, University of Sydney.

Paris, Cécile 1993 User Modelli ng in Text Generation, London & New York: Pinter.

Patten, Terry 1988 Systemic text generation as problem solving, Cambridge: Cambridge
University Press.

Reichenbach, H. 1947 Elements of Symbolic Logic, Macmillan.

Penman Project 1989 "The Nigel Manual", Penman System Documentation,
USC/Information Sciences Institute.

