WAG:
Sentence Generation
Manua

Mick O'Donrell

Department of Lingustics,
University of Sydney,
Australia, 2006
email: mick@darmstadt.gmd.de
June 1995

Contents i

Chapter 1

Chapter 2

Chapter 3

The WAG Sentence Generator

1.
2. Sentence Generation and Multi-Sentential Text Generation
3.
4.

Writing Sentence Speaficaions

1
2.
3.

Contents

Introduction

L oading the Sentence Generator
How to Use the Sentence Generator

Semantic Spedficaions
Roles of the Speed-Act
|deaional Spedfication

3.1 Generating Sentences Diredly from the Knowledge-Base

3.2 Ideaion Spedfied within Sentence Spedficaions

4. Textual Spedfication

4.1 Theme

4.2 Relevant-Entities
4.3 Remverable-Entities
4.4 Shared-Entities

5. Additional Fields of the Inpu Spedficaion

5.1 Constraint
5.2 Prescled
5.3 Prefer

. Simplifying the Semantic Spedfication

6.1 Semantic Defaulting
6.2 Maaos

7. The Speeker and Hearer Roles

Running Sentence Spedfications

1
2.
3.
4.

5.

6.
7.
8.

Running Sentence Spedficaions
Evaluating Sentence Spedficaionsin a Buffer
The Generator Menu

Setting Generator Preferences
4.1. Display Mode

4.2. Seledion Mode

4.3. Cortrol Strategy

4.4. Modes of Use

Setting Feaure Defaults
5.1 Feaure Preferences

Speed Output

Debuggng Lexificaion
The Generator Interface
8.1. The Generation Process

8.2. The ‘Actions’ of the Stepper

8.3. Setting Stepper Bre&kpaints
8.4. Stepping Throughthe Generation

NN PR B

O ©WXOE0 WON NNNOOY QUM MW

[

11
11
11

12
12
13
13
13

14
14

14
14

15
16
16
16
17

WAG Generation Manual iii

8.5. Other Buttons 17
8.6. Viewing Sentence Structure 18
10. Randam Sentence generation 18
11. Using the Coder to Drive Generation 18
Chapter 4 Architedure of the WAG Sentence Generator 19
1. Theoreticd Isaues 19
1.1. Control Strategies 19
1.2. Deterministic vs. Non-Deterministic Generation 20
2. WAG's Generation Process 22
2.1. The General Algorithm 22
2.2. Initial Processng d the Input 22
2.3. Lexico-Grammaticd Construction 23
2.4. Lexicd Seledion 28
2.5. Text and Speed Output 29
Chapter 5 Comparison With Penman.............ccoooevviiiiiiiceennn. 30
1. Simil arities to Penman 30
2. Differences from Penman 30
3. Summary 32
Appendix A Example Semantic FOrms...........ccoooviiiviiiiiiivecennnnns 33
1. A Simple Utterance 33
2. Changing Tense 33
3. Progressve Asped 34
4. Referring To Entities 34
4.1 ldentifiability 34
4.2 Reooverability 35
4.3 Spedker and Hearer Roles 35
5. Changing the Theme 36
6. Varying The Speedt Act 37
6.1 elicit-palarity 37
6.2 €licit-content 37
6.3 Propasing in resporse to an €licitation 38
6.4 Imperative (negctiate-action) 38
6.5 Other Respondng Moves 38
Not yet working: 38
6.6 Salutary Moves 39
7. Controlling Modality 39
8. Varying the ProcessType 40
8.1 Material Processes 40
8.2 Verbal Processes 40
8.3 Mental Processes 40
8.4 Relational Processes 41
9. Types of Circumstances & Qualiti es 41
10. Clause Complexes 41
11 Grammeaticd Metapha 42
12. Content Seledion 43

Bibliography e a4

Chapter 1

The WAG Sentence Generator

1. Introduction

The WAG system includes a single-sentence generation pogram, which all ows the
user to spedfy the semantics of a sentence, and have the program generate a sentence
expressng the semantics. This manual describes various aspeds of this sentence
generator, including the input spedfication language, how to use the WAG interfaceto
control generation, and hov to view the results of generation. An owverview of the
generation algorithm is aso provided, and a large number of example sentences
demonstrating hawv various g/ntadic forms can be adieved.

2. Sentence Generation and Multi-Sentential Text Generation

The am of atypicd text generation system isto produce atext which satisfies me
set of pre-stated gaals. Such systems are provided with a knowledge base -- which
contains information to be expressed -- and a set of goals. The system then organises
this information into sentence-length chunks, redises these dunks as gentences, and
prints or spe&ks the text. Figure 1 shows a typicd applicaion d a text generation
system: a weaher satellit e beans down weaher information to a recaver dish, which
pases the information to a wmputer. The cmputer draws upon this knowledge base
(and perhaps other sources) to generate aweaher report.

WAG Generation Manual 2

J JJJ
)y
J / Weather Data

y from Satdite
»~ ;
-

l

Today's Weather
Today'sweather should be mild,
withoccasonal showersin the late
S LENOON. 1ottt e

Figure 1: A Wedaher Report Generation System

Ideation
Base

Content Selectio

Discourse
Goals

Text Organisation
Sentence Generatig

Figure 2: From Knowledge-base to Text/Speet

A possble achitedure for this text generation processis $own in figure 2. The
threestages (which can be inter-mixed) of this architedure ae:

1) Content Seledion: Determining which of the fads in the ideaiona (knowledge)
base need to be expressed to best achieve the discourse goals.

2) Text Organisation: Splitting the seleded content into segments redisable &
single sentences (semantic spedficaions), and adering these segments into a
sequence which best achieves the discourse goals. Different discourse goals may
result in dfferent orderings.

3) Sentence Generation: redi sing these segments as entences.

The WAG system handles only the last of these stages. However, users who wish to
build their own multi-sentential text generation systems can use the WAG system to

WAG Generation Manual 3

hand e sentence generation. The users ystem need orly supdy semantic spedficaions
of sentences, and leave the detail s of syntadic generation and lexicd seledionto WAG.

This manual will i ntroduce the WAG Sentence Generation sub-system, and cetail its
use. Sedion 2 dscusses how to write sentence spedficaions for the generator. Sedion 3
detail s how to run these spedficdions. Sedion 4 dtails ssme of the internal workings
of the generator, and sedion 5 compares the WAG sentence generator with the well-
known sentence generator, Penman (Mann 1983 Mann & Matthiesen 1985. The
Appendix provides many examples of sentences, showing hov to generate spedfic
forms.

WAG Generation Manual 4

Chapter 2

Writing Sentence Speaficaions

0. How to Use the Sentence Generator

The generator may aready be part of your distribution. If nat, type (load-generator)
into you lisp listener.

To produce sentences, you can either use an existing resource model (the Dialog
resource model is best for this purpose), or write your own. If you are just leaning
WAG, it is best to use the Dialog resource model. The rest of this edion povides
badkground information abou writing sentence-spedficaions, and the Appendix
provides many examples, showing hav to produce particular variations.

If you are new to Lisp environments, you can make asentence-spedficaion run by
either:
i) cut/paste the sentence-sepcificdion into you lisp listener (the lisp prompt),
followed bya cariage return; or

ii) pladngthe airsor after the last parenthesis of the form and pressng the eval-lisp
key (Apple-e onaMag control-x e in many Sun-based li ps).

More alvanced users may wish to link the sentencerediser into a multi-sentential
text-planner. For this purpose, you would neal to use the say-example function (seefile
Processes/Generator/say.lisp). Its arguments are described in Appendix B below.

1. Semantic Spedfications

Once the Generation modue is loaded, you can generate sentences by evaluating
semantic spedficaions.l A semantic spedfication is a spedficaion d the semantics of
asingle utterance It is basicdly the spedficaion d a speedr-ad, including the speed-
function (elicit, inform, gred, etc.), the ideaional content, modality, padarity, etc., and
textual information (e.g., relevance recverability, themadty etc.).

Figure 3 shows a sample semantic spedficaion, from which the generator would
produwce I'd like information onsome parel beaters. The distinct contributions of the
threemeta-functions are separated by the grey boxes.

IWAG can dso be set to generate withou semantic oconstraint, by making random or default lexico-
grammaticd seledions, or by all owing a human to make these dedsions (seesedions X & Y).

WAG Generation Manual 5

(say dialog-5

Interactional

:is (:and initiate propose) Specification

:speaker (Caller :is nale :nunmber 1)
:Hearer (Operator :is fermale :nunber 1)

:proposition K(PS (is like |deationa
:senser Caller Specification
: phenonenon (info :is (:and information
generi c-thi ng)
:matter (pb :is panel -beater
:nunber 2))
:polarity (pol5 :is positive)
_ :nmodality (mod5 :is (:and volitional conditi onal)))/

:theme Caller Textual
:relevant-entities (P5 info pol5 Caller pb) Specification
:recoverabl e-entities (Speaker Caller)

:shared-entities nil

Figure 3: The Semantic Spedficationfor
"I'd like information onsome panel beders."

say is the name of the lisp function which evaluates the semantic spedficaion, and
cdlsthe generation process

dialog-5 isthe name of this particular speedr-ad -- ead speedr-ad is given aunique
identifier, its unit-id.

The :isfield spedfies the feaures of the unit. Thisis used bah for the speed-ad as
awhade, and for any unt in the ideaiona content. In this example, the speedr-ad is
provided with a feaure-spedficaion (:and initiate propose). The propasition is
provided with a single ideaional feaure: like The feaure-spedficaion can be asinge
fedure, or a logicd combination d feaures (using any combination o :and :or or
:not). One does not need to spedfy feaures which are systemicdly implied, eg.,
spedfying propose is equivalent to spedfying (:and move speedi-act negotiatory
propcse).

2. Roles of the Speed-Act

Most of the amlon-marked fields in figure 3 spedfy the roles of the units, and their
filler. For example, the following spedfies that the Speaker role is filled by an entity
with unt-id Caller, which is of type male.

:speaker (Caller :is male)

We can spedfy thefill er of arole in two ways:

a) Unit-1d Only: We can refer to the unit using just an identifier, e.g., :Speaker
Caller. If an entity with this name has already been defined, then the Spedker
role will paint to this entity. If no entity of this name has been defined, then a
new entity is defined and inserted into the knowledge-base.

b) Unit-Definition: If the role-fill er has nat been introduced before, we can define
the entity within the role-filler dot. For instance :speaker (Caller :is male)

WAG Generation Manual 6

defines an instance Caller, dedares the instance to be of type male, and makes
the Speaker role point to this entity. A unit-definition hes the structure:

(<unit-id>
iis <feature-specification>
role 1 <unit-specification 1>
role , <unit-specification 2>

Units can also be defined separately from the ‘say’ form, for instance by pre-loading
aknowledge-base (seesedion 22.1 below).
The possbleroles of the speed-ad are:
* Proposition: theidedional content of the speed-ad -- a unit-spedfication;
o Speaker: the unit-spedficaion d the spesing entity;
» Hearer: the unit-spedficaion d the heaing entity;

* Required: for €liciting moves, the unit-id of the wh- element. Thisis a pointer
to the dement of the ideaional content which is being €li cited;

* Elicited: for propcsing moves in resporse to an dicitation, indicaes which
element corresponds to the Required element in the dicitation. Fragmentary
responses may include just the dicited element.

3. Speafying Content: |deational Spedfication

One fundamental difference between WAG's inpu language, and that of Penman,
invalves the relation ketween sentence spedficaions and the knowledge-base (KB). In
bath systems, the KB is used to represent the world we ae expressng, the entities of
interest, the processes they partake in, and the relations between these participants and
processes.

In Penman, the ideaional comporent of a sentence plan is not part of the KB, but
rather a re-expresson d the knowledge in a form closer to language. SH.s are
constructed with referenceto the KB, but there is no necessary correspondence between
the form of the knowledge and the form of the SFL. Thisisimportant for Penman, since
SH_s are designed to work with avariety of different knowledge-base systems. Penman
users suppy a function to construct SALs from the knowledge-base. SH.s may also be
constructed by hand, withou any knavledge-base being attached to the system at all.

3.1 Generating Sentences Directly from the Knowledge-Base

The WAG sentence generator, on the other hand, is designed to be used hand-in-hand
with its own KRS, so the two are more highly integrated. The standard form of a
sentence-spedficaion daes nat itself contain a spedficaion o ideaional-structure,
rather it contains a pointer into the knowledge-base -- the fill er of the :propasition role
is usualy the unit-id of an entity already defined in the knowledge-base.2 The other
fields of the sentence-spedficaion are used to tailor the expresson d the indicaed
knowledge.

2As we will see below, we can adualy supdy an idedional spedfication in the :propcsition slot, but this
shoud be seen as a short-hand form, all owing assertion d knowledge into the knowledge-base & the same time &
spedfying a sentence

WAG Generation Manual 7

To summarise, a Penman-based text-generator needs to buld an idedional structure
re-representing the content of the KB, which the redisation comporent then operates
on, rather than the KB itself, while a WAG-based text-generator just includes in the
sentence-plan a pointer into the KB, and the redisation comporent then refers diredly
to the KB to generate asentence

To demonstrate WAG's approach, we show below the generation o some sentences
in two stages -- firstly, assertion o knowledge into the KB, and then the expresson o
indicated sedions of this KB. The following asserts some knowledge &ou John and
Mary, abou how Mary left a party becaise Johnarrived at the party. tell isalisp maao
form used to assert knowledge into the KB.

; Participants

(tell John :is male :name "John")
(tell Mary :is female :name "Mary")
(tell Party :is spatial)

:Processes

(tell arrival
:is motion-termination
:Actor John
:Destination Party)

(tell leaving
:is motion-initiation
:Actor Mary
:Origin Party)

relation

(tell causation
:is causative-perspective
:head arrival
:dependent leaving)

Now we ae realy to expressthis knowledge. The foll owing sentence-spedficaion
indicates that the spe&ker is propasing information, and that the head dof this information
is the leaving process It also indicaes which o the entities in the KB are relevant for
expresson (and are thusincluded if possble), and which are identifiable in context (and
can thus be referred to by rame). The generation process using this gedficaion,
produces the sentence Mary left because ohn arived.

(say gramm-metl
:is propose
:proposition leaving
:relevant-entities (John Mary arrival leaving causation)
:identifiable-entities (John Mary))

=> Mary left because John arrived.

As we stated, this approadc to sentence spedficaion daes not require the sentence-
spedficdion to include any idediona-spedficaion, except for a pointer into the KB.
The redisation operates diredly on the KB, rather than on an embedded ideaional
spedficaion.

Different sentence-spedficaions can indicae different expressons of the same
information, including more or less detail, changing the speed-ad, or changing the
textual status of various entities. The expresson can aso be dtered by seleding a
different entity as the head of the utterance For instance the following sentence
spedficaion wes the cause relation as the head, producing a substantially diff erent
sentence

WAG Generation Manual 8

(say gramm-met2
:is propose
:proposition causation
:relevant-entities (John Mary arrival leaving causation)
:identifiable-entities (John Mary))

=> John's arrival caused Mary to leave

For detail s abou how to assert information into the KB, seeThe WAG KRL Manud.

3.2 Ideation Spedfied within Sentence Spedfications

Sometimes it is more @nwvenient to spedfy ideaional content within the sentence

spedficdion, as in Penman's SALs. WAG alows this form of expresson also: if the
filler of the :propasitionfield is an idedional spedficaion rather than a unit-id, then the
spedficdionis asserted into the KB, and generation proceeds from there. This approach
was exemplified in figure 3 abowve.

The syntax for thisideaiona spedficaionis as follows (see The WAG KRL Manud

for fuller explanation).

Syntax: (<instance-id> &rest <Keys>)

<instanceiid> - the id o an instance - if it exists, the info will be aded to the
exiging instance, else anew instanceis creaed. If the instance-idis”_", then WAG-
KRL will provide aunique instance-id o itsown, e.g., (_ :ador Fred)

<Keys> any d thefollowing:

ris<le> adescription d the fedures the item has. <le>isalogcd expresson o
fedures e.g., human, (:and human male), (:not human), (:or processqudlity).

:<role> <unit-id> e.g. :location Sdney - sets the fill er of the role to the spedfied
unit. If the role dready exists for this unit, the new role fill er is unified with the
exiging ore. For instance if we as%rtedf the spedker of a say form to be
:speaker (S1:isfemale), then we can use Sl as arole fill er in the propasition,
e.g., :actor S1

:<role> <unit-description> Rather than proving an urit-id, we can provide a
spedficaion d the filler in more full-form. Basicdly, we replace the unit-id
with afull spedficaion, e.g.,

(say Examplel
:proposition (p1 :is material-process
:actor (fred :is human
:name "Fred")
:actee (_ :name "Mary")))

:<role> <string/number> e.g. :name "John" - creaes an instance for the string a
number (see spedal values in the KRL Manual), and makes that instance the
filler of the role. If an instance with that value drealy exists, it is used rather
than creaing a new instance

:<role> (:and unit-id1 unit-id2 ...) e.g. :actor "(:and JohnMary Paul) - for roles
which alow multiple-role-fillers, credes a set-unit which goups these
instances. They will be generated as a mnjunction, e.g., John, Mary and Paul..

:<role> <variable-reference> e.g. :actor *focus*.Designer - setstherole-filler to
the instance pointed to by the reference References can only be avariable-
reference (seesedion onreferenceformsin the KRL Manual).

WAG Generation Manual 9

:<role-chain> <instance-id/tell-form/spedal/variable-reference> - In any o the
abowve forms, the role spedficaion can be replacal by a role-chain, eg.,
-actor.location.name "Sydney'

:constraints <constraint> allows the use of the nonrmaao-mode logic (see
the KRL manual) e.g.,
(tell p1:congtraints (:or (:type Actor male) (:fill Acteefemale)))

4. Controlling Expresson: Textual Speafication

The sentence-spedficaion includes sveral fields which spedfy various textual
statuses of the entiti es in the knowledge-base:

4.1 Theme

This field spedfies the unit-id of the idedional entity which is thematic in the
sentence If a participant in a process it will typicdly be made Subjed of the sentence
If the Theme plays a drcumstantial role in the propasition, it is usualy redised as a
sentenceinitia adjunct. WAG's treament of Theme needs to be extended to handle the
full range of thematic phenomena.

4.2 Relevant-Entities

This field contains a list of the ideaiona entities which are in the relevance space
(see tapter 5 of my thesis), and are thus sleded for expresson. In the example in
figure 3, five antities are nominated as relevant:

:relevant-entities (P5 info pol5 Caller pb)

Thisfield isnot necessary when an explicit ideaional spedficaionisincluded in the
‘say’ form. In such cases, the generator assumes that al the entities included within the
spedficaion are relevant, and no ahers.

However, when the :propasition dot contains only a pointer into the knowledge-
base, the :relevance field spedfies which elements of the KB to express See dapter 5
of my thesisfor an example using the relevance spaceto seled out successve dunks of
aKB (there cdled amaao-idedional structure).

4.3 Reoverable-Entities

Thisfield contains alist of the idedional entities which are recoverable from context,
whether from the prior text, or from the immediate interadional context (e.g., the
speker and heaer). See hapter 5 of my thesisfor detail .

4.4 Shared-Entities

This field contains a list of the ideaional entities which the spesker wishes to
indicate a known by the listener, e.g., by using dcfinite reference See tapter 5 for
detail s.

WAG Generation Manual 10

5. Additional Fields of the I nput Spedfication

Some alditional fields are dlowed in the semantic spedficaion, extending the
expressve power of the inpu language.

5.1 Constraint

This:constraint field all ows the user to assert structura information which canna be
expresed by smply spedfying feaures or roles of elements of the speed-ad. For
instance, tenselasped is pedfied in the WAG system by spedfying the relative
ordering d threepoints of time (foll owing Reichenbach 1947%:

Speaking-Time: when the utteranceis made;
Event-Time: when the event takes place
Reference-Time: A reference point adopted by the spedker.

We can provide a:congraint field in the semantic spedficaion to express these
relations:

(say utterance-1
lis (:and initiate propose)
:proposition P1
:speaker Caller
:constraint (and (< Proposition.Event-time Reference-time)
(= Speaking-time Reference-time)))

5.2 Preseled

This field al ows the user to ‘preseled’ feaures of the lexico-grammaticd structure.
Some grammaticd dedsions may na be semanticdly constrained, and this field allows
the user to spedfy which feaure to chocsg, e.g.,

:preselect ((p3 indefinite-pronom-group))

The first element of a preseledion spedficaion (p3in this example) is the unit-id of
an idedional unit, the seandis a feaure-spedficaion which the grammaticd redisate
of the ideaional unit must have. This feaure-spedficaion must not conflict with the
rest of the constraints on that unit, meaning that it must be cmpatible with the usual
lexico-grammaticd preseledions, and also with the feaure’ s sledion-constraint.

5.3 Prefer

While :preseled spedfies fedures that particular grammaticd units must have,
:prefer al ows the user to spedfy fedure defaults, e.q.,

:prefer (passive)

During the generation process there is often more than ore fedure in a system
appropriate to express the semantic spedficaion. This is true when no feaure in the
system is preseleded, and the seledion-constraints on more than ore fedure ae met. In
these caes, an arbitrary choice neals to be made. By pladng a feaure in the :prefer
field, the user can cause the preferred feaure to be chosen in such cases.

Feaure preferences can aso be set globally using the *feaure-preferences* variable.
Thisvariableis aso used for semantic defaulting, as discussed just below.

WAG Generation Manual 11

6. Simplifying the Semantic Speafication

Hovy (1993 points out that as the input spedfication language gets more powerful,
the anount of information required in the inpu spedficaion cgts larger and more
complex. The Penman system uses a oupe of methods to avoid the growing
complexity of the inpu spedfication. These have been adapted in WAG as foll ows.

6.1 Semantic Defaulting

When the inpu-spedfication leaves particular semantic systems unresolved, Penman
chooses a feaure on a default basis. For instance, the foll owing feaures are the default
when na stated in the inpu spedficaion: Speed-function: statement; Tense: simple-
present; Polarity: positive Modality: nore.

WAG also uses feaure defaults. A variable *feaure-preferences* is defined, which
holdsalist of the default (or preferred) feaures. Before generation kegins, the procesor
goes throughead unt of the semantic spedfication and ensures that, for those systems
with no peseleded choice the default feaure is €leded, if its sledion-constraint is
met.

Defaulting is necessary since the WAG system uses a deterministic generation
strategy -- ead grgammaticd choice must be resolvable as it is met (see sedion 41.3
below). Grammaticd choices will not be resolvable unlessthe semantic dedsions they
depend on lave drealy been resolved. WAG thus forces those semantic dedsions
which have not been resolved bythe inpu speaficaion.

Below is shown the Say form from figure 3, this time in a reduced form relying on
defaults:

(say dialog-5
:speaker Caller
:proposition
(P5 :is like
:senser Caller
:phenomenon (info :is (:and information generic-thing))
:matter (pb :is panel-beater
:number 2))
:modality (mod5 :is (:and volitional conditional))))

6.2 Macros

Penman allows the user to define macros -- short forms in the inpu spedficaion
which expand ou to more extensive forms. For instance..
‘tense present-continuous

...inan inpu spedficaionis replacel with the foll owing before processng begins:

:speech-act-id
(?sa / Speech-act

:speaking-time-id (?st / time
:time-in-relation-to-speaking-time-id ?st
‘time-in-relation-id (?st ?et ?st) ?et
precede-q (?st ?et) notprecedes))

:event-time (?et / time

precede-q (?et ?st) notprecedes))

WAG does nat use maaos. To serve the same function, we can add feaures to the

networks which represent complex spedficaions. For instance a system has been added
to the speedr-ad network, which includes feaures sich as present-continuous, past-

WAG Generation Manual 12

perfed, etc., ead feaure being associated with redisations which assert the necessary
structural constraint (seefigure 4). These feaures can then be included in the feaure-
field of the sentence spedfication, ading as a short-form for the asciated structural
constraint.

— 9 mple-present

(:and (= Speaking- Time Reference-Time)
(<= Refearence-Time Propostion.Event-Time))

speech-act —1— past-perfect

(:and (< Reference-Time Speaking-Time)
(< Proposition.Event-Time Reference-Time))

— present-perfect

Figure 4: Adding Fedures as a Form of Maao

7. The Speaker and Hearer Roles

The Spe&ker and Heaer fields are presently used for two puposes:

e Pronominalisation: The Spe&ker and Heaer roles are used to test if
pronaminalisation is appropriate: if the fill ers of these roles are dso part of the
propasition being expressed, then pronaminalisation is cdled for, eg., I, you,
etc.

» Voice Seledion: WAG chedks the gender feaure of the Spedker to determine
which vaiceto usein Madntosh' s text-to-speed system.

Note that the dtributes of the Speeker and Hearer do nd need to be re-defined for
eat sentence We can pre-define the speed-participants as entities in the knowledge-
base. Each speedr-ad spedficaion thence only needs to refer to the unit-id of the
speker and reaer.

In theory, the Spedker and Heaer fields are available for user-modelling puposes:
lexico-grammaticd choices can be cnstrained by referenceto attributes gedfied in the
Speeker and Heaer roles (cf. Paris 1993 Bateman & Paris 1989h Hovy 198&). Since
the fill ers of the Speaker and Heaer roles are ideaional units, they can be extensively
spedfied, including their place of origin, social class socia roles, etc. Relations
between the spedker and hearer could aso be spedfied, for instance parent/child, or
doctor/patient relations. Lexico-grammaticd dedsions can be made by reference to this
information: tailoring the language to the spe&ker’s and heaer’s descriptions. This has
not, however, been dore & present: while the implementation is st up to hande this
tail oring, the resources have not yet been appropriately constrained.

WAG Generation Manual 13

Chapter 3

Generation Interfaces: Madntosh

1. Running Sentence Spedfications

Once written, semantic spedficaions can be run in a number of ways. This ®dion
describes these. The threemain ways, described below, are:

» Evauating Sentence Spedficaionsin aBuffer;
» Usingthe Window-Based step-through generation Interface

* Using the Coder to step through the generation, with the user making eat
choice

2. Evaluating Sentence Spedficationsin a Buffer

Onceyou have written a semantic spedfication, you can evaluate it. Aswith al Lisp
forms, you evauate it by padng the aursor after the last parenthesis, and then chocse
Eval Seledionfrom the Eval menu (aternatively, type Cmd-€).

You can aso evauate dl sentence spedficaions within an open file buffer by
seleding Eval Buffer from the Eval menu (aternatively, type Cmd-h).

You can evaluate an unopened file of sentence spedficaions using the Load File
option from the Eval menu.

WAG Generation Manual 14

3. The Generator Menu

The generation menu dfers me other options which may be useful during sentence
generation. Seefigure 5.

Figure 5: The Generation Menu

» Debug Lexification: Brings up an interfacewhich allows you to step through
the lexificaion pocessfor ead led of the grammaticd structure. Helps you to
locae where the processwent wrong Seebelow.

* Re-Display Reaults: Displays the last sentence ajain. Use in conjunction with
changed dsplay modes (seePreferences abowe) to show alternative views of the
sentence

* Show Realisations of Top: Prints out the redisations associated with the top-
level of the grammaticd structure.

» Show Realisations of Current: Prints out the redisations associated with the
current grammaticd unit, assuming generation troke & some point before
completion.

Graph Current Gram Unit: Produces agraph d the aurrent sentence structure.

Graph Current Speed-Act: Produces a graph d the airrent speedi-ad being
expressed.

Show Current Gram Unit: Brings up the Resource Explorer card for sentence

Show Current Speed-Act: Brings up the Resource Explorer card for the
current speedr-ad being expressed.

Load Example: Loads in an example form [Not Currently Working].

Re-Generate Current Speed-Act: Re-generates the aurrent speedr-ad, most
useful after some grammaticd changes have been made.

WAG Generation Manual 15

4. Setting Generator Preferences

Choose Preferences... from the Generator menu to change some options in the
generation process Seefigure 6.

Display Mode |Text-OnIy v |
Selection Mode
Control Strategy |Target-Driven v |

X Print each word as Generated
[] Print Time Taken in Says

X Clear KB before running Say

Figure 6: The generation Preferences Dialog

4.1. Display Mode
Controls how the generated sentenceis displayed:
a) Text Only: Only the final sentenceisdisplay.

b) Continuows Text: If a series of sentence-spedficaions are evaluated, the
generator displays these & a single paragraph. A new paragraph is garted
whenever the fill er of the speker role changes.

¢) Function Structure: prints the top-level function-structure of the sentence,
and the feaures of this unit.

d) Long Structure: prints the full function-structure and feaure structure of the
sentence

€) Interna: printsthe MCL-internal representation d the sentence

f) Speed: if the Madntosh Speed manager is installed, the sentence is
uttered. If the gender of the spedker is supdied in the sentence-spedfication,
then an appropriate voiceis sleded.

4.2. Seledion Mode
Controls the order in which feaures are tested:

* First: Fedures are tested in the order in which they appea in the system
definition, with the exception that explicitly stated feaure-preferences (see
abowve) are ordered first.

o Last: Fedures are tested in the reverse of the order in which they appea in the
system definition, with the exception that explicitly stated feaure-preferences
(see dowve) are ordered first. This ordering is the default, since usually
Systemicists placethose feaures with noredisation last, and thus sleding this
mode resultsin the smplest structures.

» Random: Feaures are tested in arandam order.

WAG Generation Manual 16

4.3. Control Strategy

This choice ontrols whether or nat the generation d grammaticd structure is
constrained by the semantic:

» Target-Driven: Use the Feaure Seledion Constraints to constrain the choice of
ead feaure, andin lexicd seledion, use the semantic referent as a onstraint.

* None: No semantic constraint is used -- the first suitable feaure in ead system
is sleded, as ordered in regards to the seledion mode discussed above.

4.4. Modes of Use
Chedk or unchedk the cdhedk-box to switch between dff erent generation modes:

* Print Each Word as Generated: If on, eat word is printed as it is sleded
(incremental display). Otherwise, we produce nathing urtil the entire sentence
structure is compl eted.

e Print Time Taken: If on, the program prints how much time the generation o
the sentencetook

» Clear KB before Running Say: If on, the program cleas the knowledge base
before eab ‘say is evaluated. This is useful if you are dhanging the idedional
content of the say-form, in a way which is contradictory. If you are generating
from a KB (seesedion 22) then this mode will not work.

5. Setting Feature Defaults

5.1 Feature Preferences

Setting feaure defaults (either semantic or grammaticd) at present requires you to
edit afile. Open the load file for the grammar you are using, and look for the :feature-
preferences field. Add the feaure you want to thislist, abd evaluate it.

Undefaulted Systems List: XXXX

6. Speed Output

If the Madntosh Speed manager is installed on you madine, then you can have
WAG spedk the generated text. To dothis, you reed to seled Preferences... from the
Generation menu, then switch Display Mode to Speed.

Two ather menuitems are used for speed. Look undr the General menu:

e Speed Voice letsyou dck the aurrent speed vace
» Speak Seledion: the aurrently highlighted seledion will be spoken.

WAG Generation Manual 17

7. The Generator Interface

WAG includes a stepping interfacefor the generator. This interface #ows you to
view ead step in the generation d a sentence, and seethe structure asit is built up.

Once you lave evaluated a sentence spedficaion, you can seled Generation
Interface from the Generator menu. You will be presented with awindow, as siown in
figure 7.

O Single Step Graph Speech Act Graph Sentence

0
Set Breakpoints Load Speech Act

Current System: CLAUSE-ADVERBIAL-SYS Present Unit

Current Feature: ADVERBIAL-MODIFIER Realisations

no-adverbial-... E Require Adv-Qualif

Selected Feature

full
clause-simplex
clause

Type Adv-Qualif adverb
Order Pred Adv-Qualif

Semantic Constraint
Exists Referent.Process-Quality

Relevant Referent.Process-Quality
Same Referent.Process-Quality Adv-Qualif.Referent

Result: clause-adverbial:|{#]
i primary-circ-sys
NextActon H# ... beneficiary-choicd
. object-insertion
Grammatical Structure process-type
progressive
perfect

voice
dependence

tense
subject
pred(verb)

Figure 7: The Generation Interface

7.1. The Generation Process

WAG uses a similar generation algorithm to that used in Penman. Generation is
basicdly driven by the grammar system network. The program steps through this
network from the left (choasing first between clause, group, and word), referring to
bath the preseledions on the unit, and to the fedure-seledion constraints on ead
fedure, to seewhich feaure to choose in ead system. SeeSedion 42.4 below for more
description d this process See O'Donrell-Thesis, chapter 6, for more information on
feaure-seledion constraints.

7.2. The*Actions’ of the Stepper

Generation procedls via aseries of actions -- subtasks in the generation process
These include, for instance test-semantic-constraint, assert-redisations, test-
preseledions, order-constituents, seled-lexeme, etc.

Towards the bottom of the interfaceis a display which shows which adion was just
performed, what result was recorded (the sequence of adions depends on the result of
the prior adion), and what the next adionwill be.

WAG Generation Manual 18

You can set Sepper Breakpoints (seebelow) so that the program only stops before
catain adions. | generally stop orly on test-semantic-constraints, which means there is
only ore bre& per feaurein the traversal.

7.3. Setting Stepper Breakpoints

It is often desirable to let the generation processrun, and orly stop at certain places.
Pressng the Set Breakpoint button will bring upa dialog which allows you to control
the various bregpoints (seefigure 8). Two sorts of bresing are possble:

» Action Breaking: generation will bregk whenever the adions in the right-hand
column are readed.

» Feature Breaking: generation will bregk whenever the feaures in the right-
hand column are readed.

To switch between these types of bresing, click down on the Break Type field
which says"Action" or "Fedure" -- thisis apopupmenu.

Doube-clicking onan item in either column will move it to the other column.

Don't Break On

enter-next-system
try-next-feature
test-preselections
test-semantic-constraintg
assert-realisations
add-new-systems
order-the-constituents
realise-constituents
realise-next-constituent
test-if-lexical-unit
print-results

Double-Click on item to Move it
to the other list.

Figure 8: The Set Breakpoints Dialog

7.4. Stepping Through the Generation
Four buttons control the progressof the generation.
GO: The generator proceeds urtil the next bre&k-point is readed.
Single-Step: The generator performs the next adion orly.

Break: Generation is gopped as if a bre&k-point was readed. Press Go or Sngle-
Sep to proceal.

Reset: Resets the interface cleaing all generated structure, and ready for starting
again. Note that the arrent speedr-ad is nat cleaed, so Go will sart the
generation again.

WAG Generation Manual 19

7.5. Other Buttons
Some other buttons are avail able:

Force Choice Allows the user to go against the default feaure order, seleding a
feaure of lower priority. The feaure may fail to be seleded if it goes against
either the preseledions or its feaure-seledion constraint fail s.

Graph Speedt Act: Click hereto dsplay agraph d the arrent speed ad.
Graph Sentence Click hereto dsplay agraph d the sentence structure so far.

Load Speed Act: Allows the user to load in a new speedr-ad from the memory-
resident examples (defined using the Examples fadlity). (TEMPORARILLY
NOT FUNCTIONAL).

7.6. Viewing Sentence Structure

In the bottom-left-hand corner of the window is a display of the grammaticd
structure of the arrent unit asiit is built up. As ead fedure is €leded, its redisation
rules are asserted, and the acumulated structure is shown here.

Alternatively, pressthe Graph @ntence button to see agraph d the sentence &
far generated. Use the graph menu (click on any noce of the graph) to explore the
structure using the Resource Explorer.

Alternatively, doule-click on the Present-Unit identifier, shown in the top-right-
hand corner of the interface This will take you dredly to the Resource Explorer card
for thisunit.

8. Debugging L exification

Sometimes the generation rocessresults in a sentence other than the one you want.
Often, thisis becaise an urexpeded lexicd choice was made. To help discover where
the lexificaion pocess went wrong WAG includes a lexificaion debugger, which
allows you to step throughthe lexificaion pocess so you can see where the problem
arises.

To open the Debugger, seled Debug Lexfication from the Generation menu. A
window similar to that in figure 9.

WAG Generation Manual 20

el B N

unit324 Lex Features Candidates Sem Features
unit330 positive-modal will-aux ability [

ideational-unit
root

can-aux2

could-aux2
E could-aux1

may-aux

Inflect Features

|-
Current:

sciecion: T |
e

unit364 nonreduced-r... would-aux < nonvolitional
unit351 must-aux nonconditional
might-aux modal-quality
can-auxl quality
<51
|

Figure 9: Debuggng the Lexification Process

Lex-IDs: The Lex-id box contains a list of al lexicd items contained in the last
generated sentence Click on ore of these and the interface will display information
abou thislexicd item, namely:

Lex-1d: The unit-identifier of the word-rank grammatica-unit.
Sem-Id: The unit-identifier of the referent of the item.

Lex Features. The lexicd feaures which the generation processrequired for the
lexicd item.

Infled Features: The inflediona feaures which the generation process required
for thelexicd item.

Candidates. A list of the lexicd-items which are syntadicdly appropriate, before
semantic filtering.

Sem Features. The semantic feaures of the referent, ordered in terms of
deaeasing cdlicagy.

Lexifiers. Thelexicd items which expressthe airrently seleded semantic feaure.

The lexificaion proceads as foll ows. the program takes ead semantic feaure in turn,
and looks up the lexicd items which include that feaure. This %t isinterseded with the
set of grammaticd candidates, and the intersedion is displayed in the Lexfiers field.
Eadh of these ae unified in turn against the full semantic constraint, to seeif all of the
semantic feaures of the lexeme ae compatible with sem-id. if so, the item is ®leded.
Otherwise, the next lexifier is tried. If no lexifiers of this fedure ae gpropriate, then
the next semantic feaureistried, until some gpropriate lexicd item isfound

Use the Sep button to step throughthis process To reset and start again, click onthe
item in the LexIdsfield.

10. Random Sentence generation

[To be Described]

WAG Generation Manual 21

11. Using the Coder to Drive Generation

The WAG Coder can be used as an interfaceto generation, alowing youto step
throughthe feaure seledion d aunit, making al the dhoices.

This interfaceis ided for testing sub-parts of the grammar. The Coder interface
allows you to try dternative seledions in systems, so that you can test a range of
structures which may be of interest.

Seethe WAG Coder Manud for instructionsin itsloading and use.
e Load the grammar from which youwant to generate.

» Spedfy the Coder Start feaure to be grammatical-unit (or whatever the roaot of
your grammar network is).

» Step throughfedure seledion. At any pant, pressthe Generate button, and the
Coder will default the remaining choices and generate aunit.

* In this manner, you can generate units of any kind, e.g., clauses, groups or
words.

Often we know the sentence we want, but not what feaures it has. We can use the
Coder to try grammaticd variants untii we produwce a sentence with the same
grammaticd structure we ae aming at. We can then extendmodify the semantic
constraints to ensure these feaures are seleded.

WAG Generation Manual 22

Chapter 4

Architedure of the WAG Sentence Generator

This ®dion explores the inner workings of the WAG Sentence Generation System,
firgly in terms of its theoreticd architedure, and then in terms of the processng
algorithms.

1. Theoretical Issues

This dion dscusses sme methoddogicd isaes in the cnstruction o a sentence
generation system.

1.1. Control Strategies

Most NLP can be viewed as a processof trandating between strata: building a target
representation based on a source representation. Control strategies hande the mapping
between any two representational levels. In a tri-stratal system, we need two control
strategies (asuming a @ndut architedure): one between micro-semantics and lexico-
grammar; and ore between lexico-grammar and g-aphdogy.

a) Between Micro-Semantics and Lexico-Grammar: To produce a lexico-
grammaticd representation from a semantic representation, we can use ather a source
driven (data-direded), or atarget-driven (goal-direded) strategy:

i) Source-Driven: ead feaure of the semantic spedficaion has associated lexico-
grammaticd congtraints (the lexico-grammaticd consequences of the semantic
fedure). To buld a lexico-grammaticd structure, we take eab feaure of the
semantic spedficaion in turn, and apply its lexico-grammaticd redisations.
Thisisrepedaed for ead unt in the structure. In this way we build up a lexico-
grammaticd structure.

ii) Target-Driven: the inter-stratal mapping constraints are represented as smantic
constraints on lexico-grammaticd feaures. To buld a lexico-grammaticd
structure that encodes the semantic inpu, we traverse the lexico-grammaticd
network, choasing a feaure in ead system whaose semantic constraint matches
the semantic spedficaion. Basicdly, we build a lexico-grammaticd structure in
the grammar’s own terms, athough the doices are @nstrained by the
semantics.

Most of the Systemic generation systems use the target-driven approach (e.g.,
Penman, Proteus, Genesys). The following qude from Matthiesen (1985 demonstrates
this for the Penman system:

"In Nigel ... initiative mmes from the grammar, the general control of what happens
comes from the entry conditions of the systems. It is nat the case that the semantic

WAG Generation Manual 23

stratum has its own control, does its work and presents the results to the grammar
for redisation. Instead, it is controlled bythe entry condtions of the systems.”

Patten’s SLANG system is the exception: grammaticd feaures are preseleded as the
redisations of the semantic fegures:

“Fedures at the semantic stratum may have redisation rules which preseled
grammaticd feaures. Similarly, grammaticd feaures may preseled feaures from
the phondogicd/orthogaphic stratum.” (1988 p44).

We can also distingush between resource-driven and representation-driven systems:
aresource-driven system uses the resources to seled the next rule or constraint to apply,
while a representation-driven system uses the information in the representation to
control the structure-building. Penman uses a mixture of both -- firdtly, it is
representation-driven to the extent that the unit-of-focus -- the dement being expanded -
- is chosen in reference to the lexico-grammaticd representation: we start with the top
element (the dause), and successvely expand elements down towards the leaves of the
tree This represents a top-down, depth-first generation strategy. However, within eath
unit, the construction is resource-driven: the system network is used to control the
construction d ead unt’s internal structure. The unit is constructed by a forward-
traversal through the network, asserting the redisations of ead fedure seleded. In
smpler terms, the node-seledion strategy is representation-driven, and the rule-
seledion strategy is resource-driven.

The WAG generator follows the Penman tradition, using the lexico-grammar to
control the generation, expanding units in a top-down, depth-first manner. Each urit is
constructed as a result of a traversal of the system network. Sedion 42.4 below will
discussthe strategy in more detail .

b) Between Lexico-grammar and Graphology. While Penman and WAG both use a
target-driven control strategy between semantic and lexico-grammar, in the
graphdogicd construction, control is urce-driven. The source, in this case, is the
lexico-grammaticd structure. The processfinds the leaves of this gructure (word-rank
elements), and remvers the asociated lexicd-items. Using these items, and infledional
fedures, the gpropriate graphdogcd-forms are generated, and pinted (with
formatting, e.g., cepitalisation, spadng, etc.). Graphdogicd generation in the WAG
system will be discussed more fully in sedion 42.6 below.

1.2. Deterministic vs. Non-Deterministic Generation

Thisisauie ismost often dscussed in relation to parsing -- whether the parser resolves
ead choice before cntinuing (deterministic parsing), or whether it explores eah
aternative (non-deterministic parsing).

These same posshiliti es apply for generation also. We may read a point in the
generation processwhere two aternative means of expressng the semantics both seem
valid. Often, ead o the dhoices will | ead to appropriately generated sentences, the
choices representing alternative means of redising the meaiing.3 In other cases,
however, some coices may lead to a deal-end in the generation process -- no
appropriate redisation is passhle. This has been cdled a generation gap(Metee 1990.

3na fully-constrained system, all differences in form would be linked bad to dfferences in meaning.
However, at present, it is difficult to assgn meaning dfferences to all form differences, e.g., the semantic
difference between “1 said that he was coming’ and “1 said he was coming’. Such dfferences are defaulted in the
WAG system.

WAG Generation Manual 24

Generation gaps occur becaise doices are often dependent on ead ather -- if we
make the wrong choice d one point, there may be no valid aternatives at a later choice-
point. For instance, Metea (1990 p63) gives an example of the generation d a process
invalving someone dedding something important. At one paint in the generation, we
face a hoice between conguent redisation -- He dedded -- or an inconguent
redisation -- He made a dedsion. Both choices em equaly valid. However, the
inconguent choice dlows the ‘important’ charaderistic to be expressed -- He made an
important dedsion -- whil e the mngruent choicedoes nat -- *He dedded importantly.

When the dedsions on which a particular choice depends are nat made before the
choice is readed, then we have a determination poblem -- the choice cana be
resolved. | will discuss below the two types of solution to this problem -- forcing a
dedsion (deterministic generation), and following all alternatives (nondeterministic
generation).

Non-Deterministic Generation: A nondeterministic generator doesn’t make adefinite
dedsion lketween aternatives, but either chooses one tentatively, or follows all
aternatives smultaneoudly. The same strategies that are avail able for nondeterministic
parsing are dso avail able for generation:

* Simultaneous Generation: al options are caried forward at the same time.
This option includes ‘chart generation’, along the lines of chart parsing (cf.
Harunoet al. 1993.

» Backtracking Generation: at ead choice-point, an arbitrary dedsion is made.
When a generation dead-end is readed, the generator badktrads to the last
choice-paint, makes a different choice, and proceals from there. At one stage |
modified the WAG generator to allow badtracking. However, this generation
was very inefficient due to the large size of the badtrading stack which needed
to be saved. For thisreason | have switched to deterministic generatior?.

Deterministic Generation: In deterministic generation, the processresolves choices as
they are readied. A problem for this approach is that there is not aways sufficient
information to make the dedsion avail able.

Matthieseen (1988&) points out one problem-case for nondeterministic Systemic
generation: “How isthe situationto be avoided where a tiooser is entered before dl the
hub assciations neaded are in pace?”’(p779. In terms of WAG, this problem is dated
as follows. the generator wishes to test a feaure seledion-constraint which includes a
reference to the Referent role of some unit. However, the fill er of the Referent role has
not yet been established. The establishment of the Referent role is performed in some
other system, which has not yet been entered. The fedure seledion-constraint thus
cannd be tested.

This kind d problem is common in writing Systemic grammars of reasonable
complexity. For instance, when choosing between the feaures single-subjed and plural-
subjed (concerning Subjed-Finite agreement), the seledion-constraints refer to
Suhed.Referent, but the Subjed’ s Referent role may nat have been established yet. It is
established in a smultaneous gystem, where the Subead is conflated with ether the
Agent, Medium or Beneficiary.

4A variation d this approach stores only the choice made & ead dedsion pant, and nd the generation
environment. When generation fail s, the process goes bad to the beginning d the generation and re-credes the
structure, varying orly the last choice This approach has the alvantage of far less $orage space requirements.
However, the same structure-buil ding work might be done over and ower, meaning that this approach will be slow
if any degreeof badtradking accurs. The gproach is appropriate if the number of badtrads is asaimed to be
very small, e.g., thefirst path islikely to succee, but we dlow for the possbility of failure.

WAG Generation Manual 25

Nigel and WAG have avoided such nondeterministic problems, by careful writing o
the lexico-grammaticd and interstratal resources. However, this is a cae where the
resources are being shaped by the needs of the process a pradice which shoud be
avoided, if passble, sincethe resources lose their processneutrality.

Matthieseen (1988) proposed ore solution which avoids the re-wiring o the
grammar. He propases a least-comnitment strategy -- whenever a grammaticd choice
canna be resolved, then we shoud make no commitment, but rather postpore the
dedsion urtil alater paint. There ae potentially other grammaticd dedsions which can
be made withou waiting for this one (e.g., Smultaneous g/stems). The system is pushed
to the end d the systems-to-be-resolved queue.

This is a good solution for some caes, since it doesn’'t require any change to the
resources -- only the traversal agorithm is affeaded. However, the solution canna be
used in two situations:

1) Inter-Dependency: there may be caes where two dedsions depend on ead
other. Each dedsion canna be resolved urtil the other dedsionisresolved.

2) Referent resolved in more delicate system: sometimes the Referent is resolved
in a more delicate system, rather than in a smultaneous ystem. No amourt of
delay will solve the problem.

We wuld write the resources to avoid these situations (while dlowing cases which
could be solved using least-commitment). Alternatively, we ould introduce more
complex processes which knov how to oltain as needed the information required to
resolve the choices. | will nat discussthis further here, except to say that the concept of
‘look-ahead’ from parsing could perhaps be goplied profitably.

2. WAG's Generation Process

This ®dion describes the dgorithms for sentence generation wsed in the WAG
system. These dgorithms are fairly identicd to Penman’'s at a grosslevel, but differ in
the way these steps are implemented. A list of the ways the WAG implementation
improves on the Penman system are given in sedion 5 kelow. Note that WAG doesn’t
include any code from Penman, it isatotal re-write.

WAG Generation Manual 26

2.1. The General Algorithm

WAG’s ®ntence generation algorithm is shown in figure 10. Each of these steps will
be discussed below.

Mi cro-Semanti ¢ Specifi cation

Pre-Processing of
Micro-Semanti ¢ Specification

Build Lexico-Grammeati ca
Structure

(Sd ect Appropri ate)
L exical Items

(Build Graphologica Stri ng)

Text
Figure 10: The Sentence Generation Algorithm

2.2. Initial Processng o the I nput

Before generation bkegins, the input is processed. This processng involves three
steps.
1. Assertion of the Semantic Spedfication into the KRS: the inpu spedfication
is ‘parsed’, anaysing it in terms of the various roles and fields, and this
informationis asserted into WAG’ s knowledge-representation system.

2. Deriving Implied Structure: the program derives any additional structural
information it can from the partial spedficaion. For instance,

» Derivingfedaure information from asserted roles;
» Deriving additional roles from asserted feaures.

These steps are repeaed for eat element of the semantic spedficaion, in atop-
down manner, until all roles are processed.

3. Defaulting of Unspedfied Choices. After the prior step, there will till be
systems which are unresolved. Some of these systems are defaulted. Only
systems containing feaures drawn uponin the interstratal mapping constraints
need to be defaulted -- others can be left unspedfied. In thase systems which are
defaulted, feaures are chosen arbitrarily,> except where the user has expressed a
preference (seediscusson onfeaure defaulting above).

The result of the inpu processng stage is what | term a fully-spedfied semantic
form. ‘Fully-spedfied’ refers to the fad that -- in eadh unt of the semantic

Sif no wser-defaullt is pedfied, the program takes the last feaure in a system. This is becaise many systems
have ano-redisation aternative, and Systemicists tend to placethese feaures last. A more intelligent program
would automaticadly discover the no-redisation aternative.

WAG Generation Manual 27

representation -- the feaures which are relevant for lexico-grammatica processng have
been spedfied. Thisisrequired for deterministic generation, as discussed above.

2.3. Lexico-Grammatical Construction

The goa of the Lexico-Grammaticd Construction stage is to buld a lexico-
grammaticd structure which encodes the semantic inpu. Sedion 41.2 above mmpared
two dfferent control strategies for lexico-grammaticd construction: source-driven and
target-driven. The WAG system, in common with most Systemic generators, is target-
driven -- the congtruction is based on expanding the lexico-grammatica representation
(constrained by the micro-semantics), rather than by redisng the semantic
representation.

Figure 11 shows the basic dgorithm behind lexico-grammaticd construction in
WAG. It defines a top-down, breadth-first, left-to-right construction process (see
chapter 9 of my thesis for a description d these terms). In ather words, we first build
the structure of the top-most unit (the dause or clause-complex), and then buld the
structure of ead of the unit’s constituents, and so on davn to word-rank unts. This
type of generator can thus be cdled a‘rank-descent’ generator.

Push clause unit onto
empty stack
succeed
Pop next unit from fail -
—>(aunitfrom ol
J/wcceed
Build Current Unit's
Immedi ate Structure

succeed

(Push Constituents of Curre@
Unit onto Stack

succeed |

Figure 11: WAG’s Lexico-Grammaticad Construction Process

Thisagorithm uses a stack data-structure. A stad is a data-structure used for storing
items. It isbasicdly alast-in, first-out queue. You ‘push’ an item onto the stadk -- place
an item at the front of the queue. You can pwsh aher items ontop d this. You can also
‘pop an item, meaning that you take the item from the top d the stadk. Seefigure 12.

WAG Generation Manual 28

push pop

N

Unit -a— top-of-stack
Unit
Unit
Stack

Figure 12 The Unit Stadk

The stadk is used to store the mnstituents-to-be-processed. The process sarts off
with orly one dement on the stadk -- the sentence unit. At this paint, the informationin
this unit is minimal, just a spedfication that the unit is a dause?, and a pointer to the
Referent (semantic content) that this clause-unit is expressng.

Processng then begins: the top element is‘popped’ off the stadk, the system network
is traversed to buld up its feaure-list, and the redisation statements associated with
these feaures are gplied, thus buil ding the immediate structure of the unit.

When the dement’s immediate structure is complete, we then need to complete the
structure of eadh o its constituents. So we push ead of these anstituents onto the Unit-
Stadk, and cycle bad to the beginning d the process pop the next unit off the stac,
processthis, and so on

We ontinue poppng and processng urits until there ae no unts left to process
This occurs when all constituents of the sentence-treehave been fully spedfied. We thus
go onto the bublde labelled ‘End infigure 11. We ae now ready to move onto the next
stage of the generation process-- lexicd seledion.

Immediate-Structure Construction: | will now provide more detaill abou the
immediate-structure building stage of the generation process Following sedions will
focus ontwo aspeds of this gage -- forward-traversal and constituency ordering.

The @nstruction within ead urit of the target is resource-driven -- controlled by the
traversal throughthe system network (from left to right). In ead system, the program
chooses a feaure whaose semantic constraints are compatible with the semantic inpu.
The structural redisations of this feaure ae then asserted, and the processadvances to
the next enterable system. When al enterable systems are processd at that rank, the
unit is complete. Figure 13 shows the dgorithm for generating the immediate structure
of aunit. It is reasonably similar to the flowchart propcsed by Matthieseen & Bateman
(1991, p1086, but has been developed separately.

6The feaure clause leals onto bah clause-si mplex and clause-complex

"The lexicd seledion processcould be performed intermixed with the lexico-grammaticd construction. If so,
then the processor would then advanceto graphdogicd redisation.

WAG Generation Manual 29

Set *waiting-systems*
lig to 'rank-system'

> (Enter Next Sysem)—ta”9< Order Constituents)

ucceed ucceed
> fai
C Advance to Next Feaurew
fail ucceed

Test FeatureAgaing
Preselections

ucceed

_mu(Tes Feature's Semanti c)
Constraints

ucceed

@ssart Festure's Realisaio@

succeed

(Add New Systemsto)

waiting-sysems

succeed

Figure 13: The Immediate-Structure Building Algorithm

A brief summary of ead of these steps foll ows:

1. Set *Waiting-systems* list to ‘rank-system’: the variable *Waiting-systems*

contains the list of systems which are waiting for processng, i.e., those systems
whose entry condtions are satisfied at the present point of traversal, but which
have nat yet been ‘entered’ (no feaure has been seleded as yet).

. Enter next system: The next system from the *Waiting-systems* ligt is
retrieved, bemming the *current-system*. At this point, the feaures of the
system are ordered by \arious means.

a) Initial ordering: Internaly, the feaures of a system are ordered as they
appea in the system definition. The user can set a variable *feaure-
seledion-mode* which will change this default ordering in two ways:

* Reverse-order: the list of feauresis reversed before further processng.
This is useful for sentence generation, since the last feaure in a system is
usually the one with noredi sation attached.

» Random-order: thelist of feauresisjumbled.

b) Preferential ordering: The user can spedfy alist of ‘preferred feaures --
fedures that will be cmnsidered before ay aher feaures. These preferred
fedures are put at the front of the list resulting from (a) above.

. Advanceto next feature: the next feaure from the system is ®leded. If there
are no more feaures in the system (no valid aternatives), then processng fail s -
- either the resources contain inconsistencies, or we have readied a generation

gap.

. Test feature aganst presdedions. the fedure is tested against the
preseledions for this unit. If the feaure is consistent with the preseledions,
processng continues, else the processreturns to (3) to try ancother feaure from
the system.

WAG Generation Manual 30

5. Test feature’s £mantic constraints. the feaure's sledion constraint (see
chapter 6 of my thesis on inter-stratal mapping) is tested, and if it is consistent,
it is chosen, otherwise the process goes bad to try ancther feaure from the
system.

6. As<rt feature realisations. the redisations of the feaure ae aserted, with the
exception for the :order and :partition rules, which are stored for later
applicaion. These redisations are gplied at the end d the traversal, when we
know which roles conflate, which are presumed, and which of the optional roles
were acdualy inserted. If the assertion d the redisations fails (the redisations
are inconsistent with grammaticd information from other feaures), an error is
sgndled. This oud nd happen as Systemic grammars $oud be so
constructed in away that any legal combination d feauresisredisable.

7. Add new systems. The program chedks for any systems which bewmme
enterable with the aldition d the chasen feaure. These systems are added to the
Waiting-systems list. Penman and WAG bath keegp alist, for ead feaure, of
the entry-condtions which the feaure gopeasin. Thus, after seleding afedure,
we do nd nedl to ched al systems to seeif they have become enterable, but
only those on this list. Also, any systems which have dready been entered are
automaticdly ignared.

8. Order constituents: When all systems have been processed, the sequence rules
(order and partition) are processed, pladng the units in their surface ordering.
Seesedion below for more detail s.

Forward-Traversal Algorithms: | have outlined Systemic generation as forward-
traversal throughthe system network. If there were no simultaneous g/stemsin a system
network, traversal would be asimple matter of seleding a series of feauresin asinge
path from roct to led. However, networks allow simultaneous g/stems, so the order in
which systems are processed is not totally determined. Simultaneous g/stems can be
entered in any arbitrary order. This gives rise to two aternative strategies for network
traversal:

1) Depth-first: The systems which extend from the last seleded feaure ae
procesed before smultaneous gystems. Traversal follows one branch of the
network to the leaves before exploring ahers. Depth-first traversal is adhieved
by padng rewly adivated systems at the front of the *waiting-systems* list, so
that they will be processed first.

2) Breadth-first: Systems at the same systemic depth are processed before the
systems which depend onthem. Breadth-first traversal is achieved by dadng
newly adivated systems at the end of the *waiting-systems* list, so that they
will be procesed last. Systems which were dready on the list represent
simultaneous g/stems, and they will be processed first.

The choice between these strategies doesn’t affed processng efficiency, since dl
entered systems have to be processed anyway. The order of entry shoud na affed the
results of the generation process

Sequencing o Congtituents. This sdion describes the dgorithm used to sequence
grammaticd congtituents in the WAG generator. It represents a very sucanct method
for sequencing unts gystemicdly. Sequencing is applied after the traversal is complete,
since it is only at this point that we can be sure which o the dements marked as
optional are adually included, and also which functions conflate together.

WAG Generation Manual 31

The WAG formali sm uses two sequence operators:

» order: indicaes absolute ordering (adjacecy), e.g., (:order A B C) indicaes
function A immediately precedes function B, which immediately preceades
function C.

* partition: indicaes relative ordering, e.g., (:partition A B) indicaes function A
precades function B, but not necessarily adjacently.

Two aher aspeds need to be discussed:

* Optionality: Elements of a sequence rule can be optiond (need na adualy
occur in the fina structure). Optional elements are designated by leing
parenthesised, e.g., (:order Subea Finite (Negator)).

* Front & End: The sequencing d a unit in relation to the front and end d the
grammaticd unit can be indicated by inclusion d pseudo-functions 'Front' and
'End' in the sequence rule, e.g., (torder Front Subea), (:order Punctuation

End).
To exemplify the processng, | will assume a d¢ause which, after al systems are
entered, has the foll owing sequencerules:

Order : Punct * End;
Pred ~ Object;
Subject » Finite ~ (Negator)
Partition : (Modal) # (Perf) # (Prog) # (Pass) # Pred

1. Sequence Rule Preparation: The order and partition rules are standardised through
threesteps:

a) Remova of optional elements: the order/partition rules may contain optional
elements. Any ogional element which is nat present in the structure is removed
from the rule. The sequencerules siown above smplify to those below:

Order : Punct * End;
Pred ~ Object;
Subject » Finite
Partition . Modal # Pred

b) Standardisation of Role-Labels. Eadh congtituent may have multiple role
labels (due to conflation). Different rules may refer to ore nstituent using
different role labels, e.g., assuming that Finite and Modd are cnflated, then the
final two sequence rules in the set from above ntain references to ore unit
using dfferent role-names. The order/partition rules are standardised so that
only orerole per role-bundeis used.

Order : Punct * End;
Pred ~ Object;
Subject » Finite
Partition . Finite # Pred

c) Splitting into two-element rules. Eadch sequencing d more than two elementsis
split into a number of binary sequencers. The rules of this example ae dl binary
after the dimination d the optional elements, but thisis not always the case. For
example:

WAG Generation Manual 32

Finite # Prog # Pred => Finite # Prog; Prog # Pred

2. Processng of SequenceRules

To merge the information contained in these sequence-rules, an ordering gaphis
used -- a data-structure which represents the ordering between any pair of elements. The
sequencing rules are gplied to the graph ore & a time, as siown in the following
example.

a)

b)

d)

Initial State: The units gart out unardered in resped to ead ather, but ordered
in resped to the front (FRONT) and end (END) of the unit, as demonstrated in
figure 14(a). In these ordering gaphs, a cntinuots line between roles indicaes
adjacecy, a line broken by a || indicaes that other elements may intercede
(partiti oned).

Order Cycle: Each arder rule is applied in turn. The successve dfed on the
order graphis shown in Figure 14(b-d).

Partition Cycle: Each partition rule is then applied. Figure 14(e) shows the
applicaion d the one partition in this example.

Reading df the Sequencing: After al the sequence rules are gplied, we can
read of the sequencing from the graph. In most cases, there is only one path
through the graph. However, in some Stuations, sequence is not totally
determined, and aternative orderings may be possble (for instance, the WAG
grammar does nat totally determine the sequence of multiple Circumstances, or
nominal Qualifiers). In such cases, the process just takes the first ordering
aternative.

a) Theinitial state of the order graph b) After applying Punct ~ End

/ — Subj I — 0,
e \”\ / — Pred \H\
/I \ Front/:: Fin ”\ Punct — End

Front ——1—— FAn —u7 End \ /
\u\ Y
\ Punct / ~—Oobject—"

~—object—"
c) After applying Pred * Objed d) After applying Subj ~ Fin
Subj Subj—Fin
/ T |\ / |/) ™~ \
Front —1 An 1— Punct—End Front Punct— End

. s . %

—Pred—Object “~Pred—Object

e) After applying Fin # Pred
Front— —Subj—Fin— —Pred—Obj ect— —Punct— End

Figure 14: Successve States of the Order Graph

WAG Generation Manual 33

2.4. Lexical Seledion

In Penman’s lexicd seledion algorithm, semantic filtering is applied first: the
semantics provides the set of candidate lexemes which expressthe idedional type of the
referent. These candidates are then filtered gjammaticdly, and ore of the remaining
candidatesis chosen:

"Abgtradly, there ae two ways in which sets of candidate lexicd items are
constrained and denctational appropriatenessis the first kind o constraint appli ed.
Then ggammatica constraints -- such as the requirement that the lexicd item be an
en-participle -- are used to filter the set of denctationally appropriate terms.”
(Matthieseen 1985.

The WAG system filters on gammaticd grounds first. As a general case, | believe
that the Penman approach (semantic filtering first) is best. However, for a variety of
reasons, lexicd seledion in WAG is quickest when grammaticd filtering is performed
first. This is true particularly for closed-class lexicd-items (pronours, prepositions,
conjunctives, verbal-auxili aries, etc.), of which most can be totally resolved through
grammaticd seledion ony. Even for open classitems, grammaticd filtering seems to
be quicker.

However, as the size of the lexicon gows, starting with semantic filtering will no
doult prove more dficient. it would also be useful if we wld identify, a priori, whether
a particular item was filled by an open-classor a dosed classitem. We muld perform a
semantics-first filtering for open-classitems, and a grammar-first filtering for closed-
classitems. Unfortunately, it is difficult to spedfy exadly what grammaticd classes are
open- or closed-class espedaly since it is our padicy nat to buld any resource
information into the program itself.

The Penman system associates ead lexeme with a single ideaional feaure (or
concept in Penman's terms). The WAG system overcomes this limitation, alowing eath
lexeme to be aswciated with a set of idediona feaures. For instance to spedfy the
semantics for the word "woman", Penman would neal to creae an idedional feaure
woman, which inherits from both female and adut.8 In the WAG system, we can
spedfy that the lexeme's mantics is (:and female adut), avoiding the need to crede a
new concept for ead combination o fedures.

2.5. Text and Speed Output

The sentence generator can produce @ther text (a graphdogicdly formatted
sentence), or speed ouput.

1. Text Output: The text output is derived from the lexico-grammaticd structure
(including lexicd items) constructed duing the prior stages. The mappings
between lexico-grammaticd and gaphdogicd form are not stated dedaratively
-- they are encoded in the lexico-grammar-to-text procedure. These resources
will eventually be dedarativised. The graphdogicd stringis derived as foll ows:

a) the lexicd items are etraded from the leaves of the lexico-grammaticd
tree in order of occurrencefrom left to right.

8t is nat necessry to spedfy the feaure human, since female in the Penman Upper Model inherits from
human.

WAG Generation Manual 34

b) an appropriate graphdogicd form is generated for ead lexeme, given its
infledion fedure.

c) theleft-most graphdogicd form is cepitali sed.

d) Spadng: aspace tarader is placel between ead graphdogicad form. Some
purctuation symbals modify thisrule:

No spacebefore: ., ; ? ! ' " (closequaes)
No Space #ter: ' " (open qudes)

2. Speed Output: If the speedr-output optionis Eleded, the WAG system speeks
the generated sentence using the Madntosh Speed Manager (a text-to-speed
program). WAG will chedk the designated gender of the ‘Spe&ker’ role of the
inpu spedficaion, and chocse avoice gpropriately.

Chapter 5

Comparison With Penman

In bulding the generation comporent of WAG, | have borrowed strongy from
Penman’s general architedure. However, | have atempted to corred many of the short-
comings in the Penman system. Note that WAG uses nore of Penman’ s code.

1. Smilaritiesto Penman

The aeasin which WAG has borrowed from Penman are:

1) Grammar-driven control: WAG uses Penman's grammar-driven control
strategy, in common with the majority of Systemic generators.

2) Traversal Algorithm: The WAG traversal algorithm is smilar to Penman’s,
althoughthe choasing d feaures in a system is different in WAG - based on
evauating feaure seledion condtions, rather than traversing a chocser-tree

2) Upper Modelling: Penman's Upper Model is the basis of WAG's idediona
representation, although WAG's Upper Model is represented as a system
network, rather than as a LOOM inheritance network. WAG has also adopted
Penman's means of handing danain knowledge - subsuming damain concepts
under upper-model concepts rather than relating them diredly to the lexico-
grammar (see tapter 3 of thess).

3) Resource Definition and Access For reasons of resourcemodel compatibility
between Penman and Nigel, WAG accets gstem definitions in Penman's
format, and can export to this format (althougha modified format is preferred
for WAG). Many d WAG's resource-access functions (functions for accessng
the stored Systemic resources) are named identicaly to Penman's, athoughthe
internal storage of the resources is different. This has been dore for code
compatibility reasons.

WAG Generation Manual 35

2. Differences from Penman

WAG improves on Penman in severa diredions:

1.

Input Spedfication: WAG’s smantic spedficaion form is naot dissmilar to
Penman’s inpu form -- Sentence Plan Language (SH.) -- except for severa
improvements. In summary, these ae:

a)

b)

d)

f)

Extended and linguistically-based speed-act network: the speedr-ad
network has been extended to hande a wider range of speedr-ads. The
speedr-ad categories rest on a firm theoreticd basis in the Berry-Martin
tradition.

Treatment of proposition as part of speed-act: The relation o
propasitional content to speedr-ad was rather ad-hoc in Penman, where the
speedr-ad was tadked onto the propasitionto be expressed. Speed-function
seams to have been added onas an afterthough to an originaly dedarative-
only system. In the WAG system, the relationship has been clarified, with
the propasitional content being treaed as a role of the speedr-ad to be
expressed.

Generation directly from KB: WAG dlows @entence-spedficaions to
include just a pointer into the KB, while Penman requires an ideaiona
structure to be spedfied within ead sentence-spedficaion.

Designation of Wh-element in elicitations: it is difficult to designate the
element which shoud be the wh-element of a question in Penman, the user
needs to dredly spedfy the aswer to an identificaion inquiry, a process
which involves sme knowledge of the interna working d the Penman
system. WAG alows the user to designate the wh-element (the Required
element) in theinpu spedficaion, in asimple, theoreticdly-based manner.

Extended textual spedfication: WAG has extended the range of textua
spedficaion pasble in the inpu form. This includes the recmverability,
identifiability, and relevance of entities. To match these feauresin SHL, the
user needs to include inquiry preseledions -- forced respornses to Penman’s
inquries -- arather low-level approach.

Complex ideational feature spedfications: In Penman, ead ideaional unit
can have only a singe feaure (e.g., ship), or a most a @wnjunction d
feaures. WAG alows the user to spedfy the type of semantic unit using any
logicd combination d feaures, using conjunction, digunction a negation.

Interstratal Mapping: Penman's chooser-inquiry interface has proven
problematic for two reasons:

a)

b)

The chocser-inquiry interfaceis partially procedural, and thus not re-usable
for analysis. The WAG system has replacel the chocser-inquiry interface
with a dedarative mapping system (foll owing Kasper's approac), used for
both analysis and generation.

When extending Penman's resources to generate new sentences, it is often
difficult to work out what input spedfication is necessary to get a particular
lexico-grammaticd form. The main reason for this is the need to work on
four levels of representation:

» Upper-mode concepts and structures
* Inquiry spedficdions

WAG Generation Manual 36

* Chooser Trees
* The System Network

The WAG system simplifies the mapping processby mapping dredly from
grammaticd feaures to upper-model concepts. It is thus easier to dscover
what input spedficaionis needed to produce aparticular lexico-grammaticd
structure.

3. Structure Building: WAG improves on Penman's dructure building in severa
ways.

a) Conciseness The Penman code for lexico-grammaticd construction is quite
long and invalved, having been developed by several programmers over ten
yeas. Some parts are difficult to penetrate, even by thase who maintain it.
The WAG system has the alvantage of being designed rather than evolved,
and takes advantage of the progress made in Penman. It has also been
implemented by a singe programmer, so ismore highly integrated.

b) Sequencing: The Penman formalism system uses four sequencing oferators
(order, partition, order-at-front, order-at-end). However, most ordering is
adually derived from a set of default ordering rules. These default orderings
are not part of the Systemic formalism, but rather an ad-hoc extension.
Penman's squencing information is not sufficient for parsing, since the
resources provide mostly default ordering, rather than all possble orderings.

The WAG system has extended the sequencing formalism to alow optional
elements in sequence rules. All ordering in the WAG grammar is dore
withou the default ordering resource The WAG grammar is thus suitable
for parsing as well as generation.

c) Proper handling o digunctive presdedions. Penman dces not hande
preseledions properly where the preseledion includes ssme digunction. The
WAG system correds this problem.

d) Use of a generalised KRS: The Penman system has gedalised code for
deding with redisation rules. All of WAG's processng is based ontop d
WAG's KRS, which is used for asserting redisation statements during
generation a parsing, for asserting a testing feaure seledion condtions,
and for asserting knavledge into the knowledge-base.

4. Lexical Seledion: The Penman system asociates ead lexeme with a singe
idedional concept. The WAG system overcomes this limitation, allowing ead
lexeme to be asciated with a set of idedional fedures.

5. Lexical network into system network: In Halliday's Systemic grammar,
lexicd feaures are organised under the lexico-grammar system network - the
word-rank sub-network. Penman dces nat foll ow this approach.® For generation
purposes, the lexicd fedures are naot organised in terms of a network, and
Penman canna chedk on the inheritance relations between lexicd feaures. The
fedures are organised into an inheritance network only for lexicd aaquisition
(see Penman Projed 1989, and this information is organised in a Loom
inheritance network, rather than as part of the Nigel lexico-grammaticd
network. The WAG system incorporates the lexicd feaures into the lexico-

93ohnBateman hes aversion d Penman which partialy correds this problem.

WAG Generation Manual 37

grammaticd network, under the word feaure. This resource is used in
processng to test compatibility of lexicd fedures.

6. Single formalism for all levels: The WAG system uses the same knowledge
representation system for all structural representation, including the internal
representation d the semantic inpu (speedr-ad and idedional content) and
lexico-grammaticd form. Penman has two systems - Loom is used to represent
knowledge, and Penman provides its own internal knowledge representation
system for representing lexico-grammatica structures.

3. Summary

While the WAG generator has only been under development for afew yeas, and by
asingle aithor, in many aspeds it meds, and in some ways surpasss, the functionality
and paver of the Penman system, as discussed abowe. It is also easier to use, having
been designed to be part of a Lingust’s Workbench -- atod aimed at lingusts withou
programming skill s.

The main advantage of the Penman system over the WAG system is the extensive
lingugtic resources avail able. While the WAG system can work with the Nigel grammar
a least in the lexico-grammar, | have not yet conneded Nigel to the micro-semantics, so
semantic generation wsing Nigel is not yet possble. The writing o appropriate feaure
seledion-constraints is atask for future development.

WAG Generation Manual 38

Appendix A: Example Semantic Forms

Below | provide examples which demonstrate how particular grammatica forms can
be atieved. These dl assume the Dialog resource model is loaded.

As gated in sedion 22 above, WAG has two generation modes:

* *Clear-KB-on-Say* =t : the knowledge base (KB)is cleaed between eath
'say’, adlowing successve say-forms to refer to the same instances withou
causing inconsistencies to arise if these instances are adgned dfferent
structure.

* *Clear-KB-on-Say* = nil : the KB is not cleaed between successve say-
forms. This alowing successve say-forms to express different subsets of the
KB, or alows ead evaluated say-form to add information to the KB.

This togde can be set by sdleding Preferences... from the Generation menu.
Alternatively, evaluate the foll owing lisp expresson kefore esaluating the say-forms:

(setq *Clea-KB-on-Say* t)
Thefirst set of examples will assume the first mode. Set the mode gpropriately.

The examples from this fdion can be found in the file: Demos.Generation
Demos.Manud Examples.

1. A Simple Utterance

For asimple utterance, we nead provide only the speed-ad and a propasition:

(say example-1
:text "A man goes to a city."
:is propose
:proposition (P1 :is (:and motion-process origin-perspective)
:actor (Mark :is (:and male adult))
:Destination (Sydney :is city)))

2. Changing Tense

We can add atense-choiceto the speedr-ad spedfication:
(say example-2
‘text "A man went to a city."
;is (:and propose simple-past)
:proposition (P1 :is (:and motion-process origin-perspective)
:actor (Mark :is (:and male adult))
:Destination (Sydney :is city)))

(say example-3
:text "A man will have gone to a city."
;is (:and propose future-perfect)
:proposition (P1 :is (:and motion-process origin-perspective)
:actor (Mark :is (:and male adult))
:Destination (Sydney :is city)))

WAG Generation Manual 39

The tense posshiliti es are:

simple-past: | went.
simple-present: I go.
simple-future: I will go.
past-perfect: | had gone.
present-perfect: | have gone.
future-perfect: I will have gone.

These tense feaures have no theoreticd status, existing orly to make semantic
spedficdione eaer, as discussed in sedion 62 above. Tense can be spedfied dredly
using the congtraint field, which is useful when the event-times of processes are drealy
defined in the KB. For example:

(say example-4

:text "A man had gone to a city."

:is propose

:proposition (P1 :is (:and motion-process origin-perspective)
:actor (Mark :is (:and male adult))
:Destination (Sydney :is city))

:constraint (:and (< Reference-Time Speaking-Time)
(< Proposition.Event-Time Reference-Time)))

3. Progressve Asped

To generate progressve aped, include continuing-eveit in the speedrad
spedficaion:
(say example-5
‘text "A man was going to a city."
:is (:and propose simple-past continuing-event)
:proposition (P1 :is (:and motion-process origin-perspective)
:actor (Mark :is (:and male adult))
:Destination (Sydney :is city)))

4. Referring To Entities

Given certain additional information, WAG will automaticaly seled a particular way
to refer to ead semantic entity. The various means for controlli ng the this expresson
are shown below.

4.1 | dentifiabili ty

When a participant is part of the shared knovledge between the speker/heaer (or
the speker believes guch), then the speaker can refer to that entity using identifiable-
reference e.g.,

» Definite Deixis: The boy
* Naming: John(if the name is known)
Otherwise indefinite deixis (a boy, some boys) is used.

Identifiability is marked by including the unit-id of the identifiable entity in the
‘identifiable-entities field of the say-form. Entities are assumed to be unidentifiable
unless included in this field. The exception to this is that recoverable antities (see
below) are assumed identifiable. Refer to chapter 5 of my thesis.

WAG Generation Manual 40

(say example-6
‘text "The man went to the city."
;is (:and propose simple-past)
:proposition (P1 :is (:and motion-process origin-perspective)
:actor (Mark :is (:and male adult))
:Destination (Sydney :is city))
:identifiable-entities (Sydney Mark))

If the name isknown, it isused (for exceptions, seeunder relevance below).

(say example-7
‘text "Mark went to Sydney."
;is (:and propose simple-past)
:proposition (P1 :is (:and motion-process origin-perspective)
:actor (Mark :name "Mark")
:Destination (Sydney :name "Sydney"))
:identifiable-entities (Sydney Mark))

4.2 Reverability

Shared information which has already been introduced to the discourse, or is part of
the immediate ewironment (e.g. the speker or heaer), is cdled rewmverable
information. Recverable information can be referred to using pronours. Other forms of
identifiable reference ae dso appropriate (see diapter 5 of my thesis).

Reoverability is marked by including the unit-id of remverable entities in the
:mentioned-entities field of the say-form:

(say example-8
‘text "He went to here"
;is (:and propose simple-past)
:proposition (P1 :is (:and motion-process origin-perspective)
:actor (Mark :is (:and male adult))
:Destination (Sydney :is city))
:mentioned-entities (Sydney Mark))

Note: He caame here. would be the preferred generation. This is an issue for future
work.

4.3 Speaker and Hearer Roles

If a participant in the propaosition hes the same unit-id as the fill er of the speer or
heaer role, then the participant will be lexicdised appropriately, e.g., "I", "my" etc.
(say example-9

‘text "l went to your city"
;is (:and propose simple-past)
:speaker (Mark :is (:and male adult))
:hearer (Mary :is (:and female adult))
:proposition (P1 :is (:and motion-process origin-perspective)

:actor Mark

:Destination (Sydney :is city

:owner Mary)))

WAG Generation Manual 41

5. Changing the Theme

The user can spedfy which entity isto be the theme of the utterance, by including a
:theme role in the say-form. Theme is by default the Agent (Actor, Senser, Sayer, etc.)
of the process SeeChapter 5 of my thesis for more detail s.

Nominating a Medium (Acteg Phenomenon, Verbiage, etc.) as Theme will force a
passve sentence. Nominating a Circumstance a Theme will front that Circumstance

(say example-10

‘text "Mary was sent by me to Sydney."

;is (:and propose simple-past)

:speaker (Mark :is (:and male adult))

:proposition (P1 :is sending-process
:actor Mark
:actee (Mary :name "Mary")
:Destination (Sydney :name "Sydney"))

:theme Mary

:identifiable-entities (Sydney Mary))

To generate an Agentlesspassve, do nd include the :actor role in the say-form, as
in example 11 kelow (aternatively, see the discusson d relevance below). In such
cases (no Agent is contained in the expresson), a passve form will result automaticdly,
so the :themefield is not necessary.

(say example-11

‘text "Mary was sent to Sydney."

;is (:and propose simple-past)

:proposition (P1 :is sending-process
:actee (Mary :name "Mary")
:Destination (Sydney :name "Sydney"))

:theme Mary

:identifiable-entities (Sydney Mary))

Spedfying the head of a drcumstantial role & theme will thematicise that role, as
shown in example 12

(say example-12

:text "To your city, | sent John"

;is (:and propose simple-past)

:speaker (Mark :is (:and male adult))

:hearer (Mary :is (:and female adult))

:proposition (P1 :is sending-process
:actor Mark
:actee (John :name "John")
:Destination (Sydney :is city

:owner Mary))
:theme Sydney
:identifiable-entities (John))

It might be desired to produce something d the form Sydneyis where | sent John At
present, WAG canna handle themes being spedfied below the top level of the
propasition. This entence can however be adieved usng a say-form using an
identifying-relation.

WAG Generation Manual 42

6. Varying The Speed Act

Chapter 4 of my thesis sts out the various geedr-ads which are posshle in the
WAG system. The range of speedr-ads are represented in figure 15.

~ initiat eicit-polarity
anmiation | MHEE 'e'icit_| .
dicit-content

- respond — propose

TURN - keep-turn / SPEECH_|~ Support

MANAGEMENT FUNCTION
- pass-turn ~ deny-knowledge
speech-act
- negotiatory — contradict
~ reques -repeat

OBJECT OF action-negotiating
SPEECHACT 4|
TVPE \NEGOTIATION

informati on-negoti ati ng

greet

- salutory T farewell
thank
Figure 15: The Speedr-ad Network

6.1 elicit-polarity

(say example-13
‘text "Is Mark going to Sydney?"
;is (:and elicit-polarity continuing-event)
:proposition (P1 :is (:and motion-process origin-perspective)
:actor (Mark :name "Mark")
:Destination (Sydney :name "Sydney"))
:identifiable-entities (Sydney Mark))

6.2 elicit-content
The Wh- element is pedfied byincludingitsunit-id in a:required field:

(say example-14

‘text "Where is Mark going?"

;is (:and elicit-content continuing-event)

:proposition (P1 :is (:and motion-process origin-perspective)
:actor (Mark :name "Mark")
:Destination (L1 :is 2d-spatial-object))

:identifiable-entities (Mark)

:Required L1

:Theme L1)

WAG Generation Manual

43

(say example-15
‘text "Who is going to Sydney?"
;is (:and elicit-content continuing-event)
:proposition (P1 :is (:and motion-process origin-perspective)
:actor (X :is human)
:Destination (Sydney :name "Sydney"))
:identifiable-entities (Sydney)
:Required X
:Theme X)

6.3 Proposing in response to an elicitation

Following an €licitation, the speker need ony supdy the dement which was
elicited. The say-form can spedfy which element was Required, using a :€licited field,

containing the unit-id of the dement that was required in the prior €licitation.

(say example-16
‘text "Sydney."
;is (:and propose required-only)
:proposition (P1 :is (:and motion-process origin-perspective)
:actor (John :is human)
:Destination (Sydney :name "Sydney"))
:identifiable-entities (Sydney)
:Elicited Sydney)

6.4 |mperative (negatiate-action)

The prior examples have dl defaulted to negatiate-information (producing

interrogatives and dedaratives). Example 17 shows an adion-negatiating move.

(say example-17
‘text "Go to Sydney!"
:is (and propose negotiate-action)
:hearer (Mark :is (:and male adult))
:proposition (P1 :is (:and motion-process origin-perspective)
:Actor Mark
:Destination (Sydney :name "Sydney"))
:identifiable-entities (Sydney))

6.5 Other Responding M oves

(say example-18
‘text "Sorry?"
:is request-repeat)

Not yet working:
(say example-19

‘text "No."

:is contradict)

(say example-20
‘text "Yes."
:is support)

(say example-21
‘text "I don't know."
:is deny-knowledge)

WAG Generation Manual 44

6.6 Salutary M oves

Since the sentence generator has been designed to operate in a interadive dialogue
environment, salutary moves are dso pcssble (e.g., "hell 0", "goodbye", "thank you').
(say example-22

‘text "Good Morning."
:is temporal-greeting)

(say example-23
‘text "Thank you."
;is (:and initiate thank))

(say example-24
‘text "You're welcome"
;is (:and respond thank))

(say example-25

‘text "Good bye."
is farewell)

7. Controlling Modality

Modality is dated as a role of the propasition. The role is filled by a modal-quality,
which requires the spedficaion from two systems. Volitionality (volitional vs.
nonvditional), and Condtiondity (condtional vs. noncondtional). Nonvditiona
modality has three sub-types. necessty, posshility and ability. The lexificaion o these
typesis shown below (negated forms not shown):

nonconditional conditional
volitional will would
necessty must might

nonvolitional possbili ty can, may could, might
ability can could

Table 1: The Modal Semantics

This modal system is borrowed from Penman's Upper Model.

(say example-26
:text "Can | help you?"

is elicit-polarity

:speaker (Operator :is human :number 1)

:Hearer (Caller :is human)

:proposition (P3
;is (:and help-action dispositive)
:actor Operator
:actee Caller
:modality (M3 :is (:and ability

nonconditional)))
:theme Operator
:relevant-entities (Operator Caller))

WAG Generation Manual 45

8. Varying the ProcessType

Halli day classfies processes into material, mental, verbal, relational, behavioural and
exigtential. The Upper Model (and thus WAG) uses al of these cdegories except for
behavioural. This ®dion will demonstrate the generation d various process types.
Materias have drealy been demonstrated, so | will not show them again.

8.1 Material Processes
8.1.1 Simple Material

8.1.2 Ditransitive Processes
Active: mary gave abookto John
Redpio-Passve: Johnwas given abook byMary.
Medio-Passve: A bookwas given by Mary to John

8.2 Verbal Processes

Note that there is at present no way to dredly spedfy the tense of the projeded
clause.

(say example-27
:text "John said Mark was going to Sydney."
;is (:and propose simple-past)
:proposition
(P1 :is nonaddressee-oriented
:Sayer (John :name "John")
:Saying (P2 :is (:and motion-process origin-perspective)
:actor (Mark :name "Mark")
:Destination (Sydney :name "Sydney")
:Constraint
(:and (< Event-Time.Start
Speech-Act.Reference-Time)
(> Event-Time.End

Speech-Act.Reference-Time))))
:identifiable-entities (Mark John Sydney))

(say example-28
:text "John told Mark to go to Sydney."
;is (:and propose simple-past)
:proposition (P1 :is addressee-oriented
:Sayer (John :name "John")
:Addressee (Mark :name "Mark")
:Saying (P2 :is (:and motion-process
origin-perspective)
:actor Mark
:Destination (Sydney :name "Sydney")))
:identifiable-entities (Mark John Sydney)
:prefer (finite conjuncted))

8.3 Mental Processes
| thougtt that Johnwas coming.
| believed Johnto be coming.
| wanted to come.

WAG Generation Manual 46

8.4 Relational Processes

8.5.1 Posssson
8.5.2 Attribution

8.5.3 Identity

9. Types of Circumstances & Qualities

10. Clause Complexes

Most cases which Halliday cdls a dause-complex, the WAG grammar models as a
clause with clausal adjunct, e.g., the following sentence

| will gowhen you ga
...conssts of amain clause: | will go, and a drcumstantial adjunct: when you ga

[GRAPH THIS]

(say example-29
:text "If Mark goes to Sydney, | will eat my hat."
;is (:and propose simple-present)
:speaker (Jim :is (:and male adult))
:proposition (P1 :is condition
:Head (P1a :is eat
:actor Jim
:actee (hl :is hat-object
:owner Jim))
:Dependent (P1b :is origin-perspective
:actor (Mark :name "Mark")
:Destination (Sydney :is city
:name "Sydney")

)

WAG Generation Manual 47

DIAGRAM of GRAMMATICAL STRUCTURE

11. Grammatical M etaphor

The following examples are stored in file Demos. Generation Demos. Gramt
Metafor. These examples require *Clea-KB-on-Say* set to nil. Seethe instructions at
the beginning d this appendix.

; Stop the KB being reset on each say
(setq *Clear-KB-on-Say* nil)
(setq *Time-Says* nil)

;;; DECLARE THE KNOWLEDGE BASE
;participants
(progn (clear-worlds)

; Participants

(tell John :is male :name "John")
(tell Mary :is female :name "Mary")
(tell Party :is spatial)

:Processes

(tell arrival
:is motion-termination
:Actor John
:Destination Party)

(tell leaving
:is motion-initiation
:Actor Mary
:Origin Party)

relations

(tell causation
:is causative-perspective
:head arrival
:dependent leaving)

(complete-the-structure 'causation)

)

(say gramm-met1
‘text "Mary left because John arrived."
;is (and propose simple-past)
:proposition leaving
:relevant-entities (John Mary arrival leaving causation)
:identifiable-entities (John Mary))

(say gramm-met2
:text "John's arrival caused Mary to leave."
;is (and propose simple-past)
:proposition causation
:relevant-entities (John Mary arrival leaving causation)
:identifiable-entities (John Mary)
:prefer (nominal-subject active-indirect-agent))

WAG Generation Manual 48

(say gramm-met3

‘text "l saw the phoning"

;is (:and initiate propose simple-past)

:speaker (Caller :is male :number 1)

:proposition (P1 :is (:and perception mental-active)
:senser Caller
:phenomenon
(11 :is phoning

:actor (John :name "John")

:polarity (P2 :is positive))

:identifiable-entities (John P1 phoning Mary))

12. Content Seledion

Relevance

WAG Generation Manual 49

1. Introduction

Appendix B

Useful Functions

This appendix outlines the lisp functions which can be accesd to drive generation
from other processes, for instance, in a multi-sentential gneration system.

 Say (macro)
Description: Thisisthe main form for generating sentences.

Arguments:

name &rest Keys

where Keys can be any shown in Table 2 below.

Key

Value

Description

feaure-struct

Sets the the speedr-ad of the utterance to
the logicd expresson. Other aspeds, such
astense and asped, can also be set through
here. When absent, defaultsto propcse.

-spedker

unit-id or
unit-definiti on

Either the unit-id o the eitity in the KB
which is the speker, or a unit-definition
(Optional). This role neals only be
provided if you reed to refer to the
speker in the propasition, or for voice
seledionin text-to-speed.

‘heaer

unit-id or
unit-definiti on

Either the unit-id o the eitity in the KB
which is the heaer, or a unit-definition.
(Optional). This role neals only be
provided if you redl to refer to the heaer
in the propasition, or for voice seledionin
text-to-speed.

‘propasition

unit-id or
unit-definiti on

Either a definition d the propasition, or
the unit-id of the semantic head o the
propasitionto be expressed. See dapter 2,
sedion 3abowe.

:relevant-roles

list of
(unit-id Rolel Role2...)

This list contains, for ead entity in the
propasition, the roles which are relevant
for expresson. Only of use when
generating from a pointer into the KB.

WAG Generation Manual 50

‘theme The idediona entity which the spegker
unit-id wishes thematicised (for English, this
means fronted pasition).
-identifiable- List of entities which the spesker assumes
entities list of unit-id known to the heaer, thus allowing dfinite
reference e.g., the President.
:mentioned-entiti es List of idedaiona entities which have

list of unit-id already been mentioned in the discourse,
which alows pronamindisation to be
used.

-eli cited-entities List of the entities which are being dlicited
list of unit-id in an elicit-content move. Typicdly a
single dement.

‘prefer List of feaures which will bewmme the
list of feaure default during generation. These can be
idedional, speedrad, or grammaticd
fedures.

-fronted list of roles When the grammar inadequately
constrains the ordering o grammaticd
roles, this list is referred to in order to
order them.

‘text The text which the say-writer expedsto be
string generated. Not used in the generation
process Provided puely to remind s
what it is suppased to da

:comment Any comments you chocse to asciate
string with the form. Thisfield can occur severa
times, dthough al are ignaed in
generation.
Say-Example

Generating Directly.

Y our multi sentential text generator might wish to maintain the the various discourse
history variables as part of its own workings. In that case, the say-example for may be
too verbaose. Below we outline how to dugicate the dfeds of this function:

1. Maintaining Variables

Variable Use

identifiabl e-entiti es Maintain thislist as

* mentioned-entiti es

* eli cited-entiti es*

WAG Generation Manual 51

*temp-preferred-feaures

Place ay feaures you want as the default temporarill y
on this list. This can be used, for instance to force &
particular referential expresson ou of the generator.
For permanent defaults, push the dement onto the
preferred-feaures list.

fronted-units

relevant-rol es

gen-display-mode

speedr-ad

top

When generation completes, this variable will hod a
pointer to the top d the grammaticd structure. Not
settable by user.

(if *Clea-KB-on-Say*

(clea-worlds)

(in-world ‘worldl))

(setq *speedr-ad* Name)
(tell-1 name example-args)
(complete-the-structure name)

(setq *control-strategy* :target-driven)

(setq *top* (my-intern (append-strings (string Name) "-1xg")
(symbad-padkage Name)))

(generate-utterance *top*)))

2. Cdlling The Generator.

(defun say-example (Name example-args)
(let ((target-text (getf& remf example-args :text)))

WAG Generation Manual 52

Bibliography

Haruna Masahiko, Yasuharu Den & Yuji Matsumoto 1993 “Bidiredional Chart
Generation Algorithm”, Proceeelings of the 4th European Workshop on Natural
Language Generation, Pisa, Italy.

Hovy, Eduard 1993"“On the Generator Inpu of the Future”, in Helmut Horac&k &
Michad Zock (eds), New Concepts in Natural Language Generation. Planning,
Redisation and Systems, London Pinter, pp283287.

Mann, William C. & Chrigtian Matthiesseen 1985 “Demonstration o the Nigel Text
Generation Computer Program”, in Benson & Greaves (eds.), Systemic Perspedives
on Discourse, Volume 1. Norwood Ablex, pp503-83.

Mann, William C. 1983 “An Overview of the Penman Text Generation System”,
USC/1SI Technicd Report RR-84-127.

Matthiessn, Christian & John Bateman 1991 Text Generation and Systemic Functional
Lingustics: Experiences from English and Japanese, London Pinter Publishers.

Matthiesen, Christian 1985"The systemic framework in text generation: Nigel”, in
James Benson & William Greaves (eds) Systemic Perspedives on Discourse:
Seleded Theoreticd Papers from the 9th International Systemic Workshop, Norwood,
N.J.: Ablex.

Matthiessen, Christian 198& Text-generation as alingustic reseach task, UCLA Ph.D.
Dissertation.

Metea, M. 1990The “Generation Gap”: the problem of Expresshility in Text Planning,
Ph.D. Thesis, Computer and Information Science Department, University of
Massadhusetts.

O'Donrdll, Michad 1994 Sentence Analysis and Generation: A Systemic Perspedive.
Ph.D. Dissertation, Dept. of Linguistics, University of Sydney.

Paris, Cédle 1993User Modellingin Text Generation, London& New York: Pinter.

Patten, Terry 1988Systemic text generation as problem solving, Cambridge: Cambridge
University Press

Reichenbac, H. 1947 Elements of Symbadlic Logic, Maanill an.

Penman Projed 1989 "The Nige Manua", Penman System Documentation,
USC/Information Sciences Institute.

