Precompiling Systemic Grammar for Parsing

Michael O’Donnell
Department of Al,
University of Edinburgh,

80 South Bridge, Edinburgh.

EH1 1HN, UK.
email: mick@darmstadt.gmd.de
Keywords: Parsing, Systemic Formalism

January 19, 1996

Abstract

Parsing with a large Systemic grammar produces
severe complexity problems. Automatic recompi-
lation of the Systemic grammar into a form more
suitable for parsing can reduce the level of parsing
complexity. This paper describes the form of one
such parsing-grammar, and its use in parsing.

1 Introduction

A Systemic grammar (Halliday 1985; Hudson
1971; Bateman 1989; Martin 1992), when used
for parsing, suffers severely from complexity prob-
lems, due for instance to the degree of disjunc-
tion present in the grammar, and also to the mul-
tiple layers of function-structure allowed, e.g.; a
nominal group may simultaneously fill the Subject,
Theme, Agent, and Actor role in the grammatical
structure (see Matthiessen et al. 1991, O’Donnell
1993, for more details). Systemic grammars also
do not include a context-free backbone, usually in-
cluded in feature-based formalisms to reduce pars-
ing complexity. Parsing with Systemic grammars
is thus that much more difficult.

One might ask the question: if Systemic gram-
mars seem so unsuited to parsing, why bother?
One answer to this question is that, over the last
decade, several wide-coverage Systemic grammars
for generation have been developed, including the
Nigel grammar from the Penman Text Generation
System. (Mann 1983; Mann & Matthiessen 1985;
Matthiessen 1985). Since such resources exist, it
1s desirable to use them for analysis, as well as
generation.

To avoid complexity problems, prior parsers for
Systemic grammars have included some kind of
limitation, either resorting to a simplified formal-
ism, or augmenting the Systemic analysis by initial
segmentation of the text using another grammar
formalism.

My goal was to parse using the a large Systemic
grammar, without any of these limitations. I have
developed a parser which handles a large subset
of the Nigel grammar, using one third of its 1500
typest (or ‘features’ in Systemics). This is still a
large grammar in terms of current parsing tech-
nology. The level of success of these efforts shows
that the complexity problems involved in Systemic
parsing are not insurmountable.

Most of the complexity has been avoided by re-
compiling the grammar into a form more suited for
parsing. This recompilation is automatic, in the
sense that no human intervention is required. This
1s necessary because the parser is only one module
of a Linguist’s Workbench.? Any change to the
grammar needs to be automatically available for
both parsing and generation.

Section 2 will provide a brief outline of the Sys-
temic formalism. Section 3 provides more detail
on the reasons why Systemic grammars offer com-
plexity in parsing, and describes how prior ap-
proaches handled these complexity issues. Section
4 describes the forms in the compiled grammar,
and section b how they are derived. Section 6 out-
lines its use in parsing. Section 7 then outlines the
advantages of this approach for Systemic parsing.

2 Systemic Grammar

2.1 System Networks

Systemic grammar uses an inheritance network to
organise grammatical features. A Systemic inher-
itance network 1s called a system network, and

L'Type’ is meant in the sense of Typed- Feature Struc-
tures, cf. Carpenter 1992; Emele & Zajac 1990.

2Workbench for Analysis and Generation (WAG): a
package of tools for working with Systemic grammars, in-
cluding syntactic and semantic analysis, sentence gener-
ation, knowledge representation, and various tools for re-
source maintenance (lexical acquisition, grapher, hypertext
grammar interface). See O’Donnell 1994a, 1994b, 1995.

— imperative

- declarative

Subject * Finite
Subject: nonwh-group

- interrogative...

finite-clause —J

+Finite; +Subject, — modal
+Mod; Mod: modal-aux
+ModC; ModC: en-verb

-] Mod # ModC:; Finite/Mod

Subject: nominal-group

clause

nonfinite-clause...

L— nonmodal...
- group... ¢

word...

Figure 1: A Fragment of a System Network

is used to organise the co-occurrence potential of
grammatical features, showing which features are
mutually compatible, and which are incompatible.
It consists of a set of systems, each of which is a
set of mutually exclusive features. There is also a
covering relation between the features of a system,
meaning that if the entry condition (the logical
condition on a system) of the system is satisfied,
then one of the features in the cover must be se-
lected. Figure 1 shows a few systems from a small
grammar for English. It includes 4 systems, rep-
resenting various grammatical distinctions.

Each feature inherits the properties of features
to its left in the network. Note that the system
network may be logically complex, since entry con-
ditions may consist of conjunctions and disjunc-
tions of features. Systemics thus allows multiple
inheritance, both in terms of conjunctive and dis-
junctive inheritance.

2.2 Realisation Statements

Systemic features may have associated realisa-
tion statements — the structural consequence of
the feature. The boxes under each feature in
Figure 1 shows the realisations of the feature.
The realisation operators used (from Penman, see
Matthiessen & Mann 1985) are as follows:

e Insert e.g., Finile=[]: the function must be
present in the structure.

e Conflate e.g., Modal/Finite: the two func-
tions are filled by the same grammatical unit
(equivalent to path equality in unification-
style formalisms).

e Order e.g., Subject =~ Funite: the functions
must appear in the surface structure in the
indicated order. In this example, the Sub-
ject 1s sequenced directly before the Finite.
Any number of elements can be sequenced in
a single rule, and optional elements can be
indicated.

clause finite-clause nonmodal positive
agent-inserted active 3rd-person-subject
plural-subject nonwh-agent declarative....

|
[| |
Subject/Agent Finite/Pred Obiect/Medium

nominal-group pronom-group E’“""al -group CO““"O"'E'A‘)ﬂ

nominative 3p-group deixis singular-group
plural-group non-qualified non-qualified ...

Thin L :
word: pronoun plural-pronoun: Deictic Thing
nominative-pronoun definite-pronoun word: determiner word: noun
noninteractant-pronoun:personal-pronoun singular-determiner common-noun
nonspecific-determiner singular-noun

"they" "ate" "an" "icecream"

Figure 2: A Systemic Structure

e Partition e.g., Thing ... End: the func-
tions must appear in a particular order, but
not necessarily immediately adjacent (linear
precedence).

e Preselect e.g., Subject: nominal-group: the
function must be filled by the designated type
of element.

e Lexify e.g., Deictic = “the”: the function
must be filled by the specified lexeme.

e Presume e.g., -Subject: the specified func-
tion, while present in the structure for order-
ing purposes, is for other purposes not present
in the structure. Used for phenomena such as
grammatical ellipsis.

2.3 Systemic Structures

A system network and associated realisation state-
ments describe a grammatical potential — the
range of grammatical structures posited by the
theory. An instance from this potential is a sys-
temic structure. A typical Systemic structure ap-
pears in Figure 2. Each element of the structure is
described both in terms of functions (one or more
— the syntactic roles this element is filling), and a
set of features.

3 The Problem of Parsing
with Systemic Grammar

3.1 The Problems

A Systemic grammar does not use a context-
free backbone — there is no phrase-structure com-
ponent. As a consequence, a Systemic parser
does not deal with a single category at each
node, but rather has to deal with a complex
description — a complex feature description (the
selection-expression for the unit), and a complex
functional description (the function-bundle of the
unit). These complexities are discussed below:

1. Complexity of the Type Hierarchy: The
type hierarchy of the Nigel grammar 1s one
of the largest in use in NLP systems, with
1500 grammatical types represented. These
types are organised in terms of disjunctions
(systems). The Nigel grammar, containing
around 700 systems, is thus highly disjunc-
tive. System networks also use both conjunc-
tive and disjunctive inheritance, and cross-
classification (called simultaneous systems in
Systemics), all of which further compounds
the Type complexity.

2. Complexity of the Function Structure:
A Systemic structure relates units to their
constituents in terms of functions. One con-
stituent may be related to its parent through
several functions. The combining of realisa-
tion rules during parsing is complex, since we
need to consider the possible combinations
of various functions (called function-bundles).
For instance, the preselections affecting a
grammatical unit may not pass through a sin-
gle function, but may be channelled through
a number of conflated functions (e.g., Agent
and Subject). Ordering of elements also needs
to take conflations into account.

3.2 Prior Solutions to these Prob-
lems

There have been seven prior approaches to Sys-
temic parsing. Most of these used grammars too
small to produce the complexity problems faced by
larger grammars, e.g., Winograd (1972), McCord
(1977), Cummings & Regina (1985), and Bateman
et al. (1992). The first three of these parsers also
used reduced forms of the Systemic formalism.
Two of the parsers rely on the input sentence
being pre-parsed using a grammar from another
formalism, e.g., Kasper’s parser initially parses
the sentence using a phrase- structure grammar
(PSG). The PSG forms a context-free backbone
to the Systemic grammar. A set of constraints
are then applied which builds up the Systemic
representation corresponding to the PSG analy-
sis. Bateman et al. (1992) also depends on a
pre-analysis, using a HPSG parser to produces a
skeletal function structure for the sentence.
There are two parsers for Fawcett’s Systemic
formalism (Fawcett 1980; Fawcett et al. 1993):
O’Donoghue (1991a, 1991b) and Weerasinghe &
Fawcett (1993). This formalism offers less parsing
complexity than the Hallidayan formalism: sys-
tem networks are not used for parsing — the parse-
grammar assigns a single syntactic class per unit.
Both of these parsers use a parsing-grammar,
rather than the Systemic grammar directly. How-
ever, neither is automatically compiled from the

finite-clause .
+Finite; [ﬁmte-lclause]
+Subject; :

Subject: (:and nominal-group Subi -
inati ubject Finite
i .
H nominative) (nominal-group: 0
nominative]

Figure 3: Re-Representing a Feature & Realisa-
tion as a Partial-Structure

Systemic grammar: O’Donoghue’s is derived by
analysing a corpus of randomly generated sen-
tences, while Weerasinghe & Fawcett’s is prepared

by hand.

4 The Form of the Parsing
Grammar

The Systemic formalism has a top-down orienta-
tion: it mainly presents what constituents each
type of unit can have. This is ideal for generation,
where top-down processing is preferred. However,
the orientation of these resources is not well suited
to bottom-up processing, which is the most effi-
cient strategy for parsing with large grammars.

Bottom-up parsing requires an upwards orien-
tation of the grammar. It is more concerned with
knowing what functions a given unit can fill (the
function potential of the unit), rather than what
constituents it can have.

This the
compilation of the usual top-down oriented Sys-
temic grammar into of a bottom-up oriented gram-
mar. A grammar tailored for bottom- up parsing
allows more efficient parsing.

section describes automatic re-

4.1 Partial-Structures

Before discussing this precompilation process, |
will first introduce the notion of partial-structures,
the basic component of the parsing-grammar. The
left-hand side of figure 3 shows a systemic fea-
ture and its associated realisation statements. The
right-hand side of the figure shows the same infor-
mation, except re-represented as a fragment of a
systemic structure (as in figure 2), what T will call
a partial-structure. The ‘.7 between the Subject
and the Finite element indicates that they are un-
ordered with respect to each other. The dotted
lines at each end of the partial-structure indicate
that other elements can precede or follow these
elements.

The whole grammar could be re-represented in
this manner, representing a shift from a paradig-
matically-organised grammar (emphasising fea-
tures) to a syntagmatically- organised grammar

(def-lexical-item
:name they-pron
:spelling '"they"
:sample-sentence 'They shoot horses, don’t they?"
:grammatical-features
(grammatical-unit word noun-word pronoun
personal-pronoun plural-noun
noninteractant-pronoun definite-pronoun)
:semantic-features
(ideational-unit general-domain thing
countable-thing nonsingular-thing)
:spelling-exceptions
((accusative-pronoun "them'")
(genitive-pronoun "their")))

Figure 4: Lexical Item Definition for “they”

(emphasising structure).?

The unification of two partial-structures pro-
duces another partial-structure, which contains
the sum of the information from both partial-
structures.

Note, however, that the partial-structures of the
parsing graminar are not just re-expressions of a
single feature and its realisations. They are more
complex. They will be introduced below.

4.2 The Partial-Structures of the
Parsing Grammar

For parsing, the Systemic grammar and lexicon are
re-represented as sets of partial-structures. Three
basic partial-structures used: lexical partial-
structures from the lexicon, and linking and or-
dering partial-structures from combinations of re-
alisation statements.

4.2.1 Lexical Partial-Structures

The first type of partial-structure is derived from
lexical 1items. Lexical items, before precompila-
tion, appear as in figure 4. Each lexical item can
be re- represented as a set of partial-structures,
one per inflectional form of the lexeme.* Fig-
ure 5 shows a partial-structure derived from the
lexical-item of figure 4. It contains the spelling
for the inflection class, and the features from the
:grammatical-features field of the lexical item, to
which is added the inflectional feature (in this ex-
ample, the nominative-pronoun feature).

3The re-representation of grammatical potential in a
form closer to grammatical structures is similar to the
approach taken by Martin Kay in Functional Unification
Grammar (Kay 1979, 1985). He was also trying to parse
with Systemic Grammar at the time.

4Lexical partial-structures are not pre-compiled, but
rather are produced during the lexical-analysis phase of
parsing.

word: pronoun: plural-pronoun:
nominative-pronoun: definite-pronoun:
noninteractant-pronoun: personal-pronoun

I
Spellling

ntheyn

Figure 5: A Partial-Structures Derived from a
Lexical-Item Definition

pronom-group

[pronom-group]\ Thing: pronoun nominative

_ inee ~ 3p-group
[plural-group] \y Thing: plural-noun plural-group
[nominative] \y Thing: nominative —'—

-pronoun Thing
pronoun

\y Thing: noninteractant
-pronoun

[3p-group] nominative-pronoun
noninteractant-pronoun

plural-noun

Figure 6: A Linking Partial-structure

4.2.2 Linking Partial-Structures

The second type of partial-structures concern the
possible fillers of each function of a unit. The real-
isation rules which specify the filler of each func-
tion (preselection and lexify rules) are extracted
out of the grammar, and multiplied out, produc-
ing a set of partial-structures, which represents
the variety of fillers the function can have. See
section b for details of the expansion process. Fig-
ure 6 shows one such partial-structure, which was
derived by combining the preselections which in-
volve the Thing function of a nominal group, and
eliminating those combinations which are incom-
patible. The partial-structure shown is only one
out of several valid combinations. Each of these is
called a linking partial-structure, because 1t rep-
resents the constraints on the linking between a
parent unit and one of 1ts constituents.

Sometimes a constituent is linked to its par-
ent through a number of functions, rather than
a single function. Figure 7 shows another link-
ing partial-structure, this time representing the
combination of preselections from two conflated
functions. The realisation rule conflating these
two functions is also incorporated into the partial-
structure.’

4.2.3 Ordering Partial-Structures

The third type of partial structures represents
the sequencing of functions. The realisation rules

5The examples in this paper draw upon the WAG gram-
mar, which provides only Ergative and Mood structure at
clause level. The Nigel grammar would provide function-
bundles involving up to five functions.

finite-clause agent-inserted
[finite-clause] N +Subject SUl%leCl'ﬂge"l'CO{‘ﬂﬂled
. 3rd-person-subject
[agent-inserted] N\ HAgent é plural-subject nonwh-agent

[subj-agent-confl] y Subject/Agent

_

[nonwh-agent] Ny Agent: (:not wh-group) Subject/Agent

[3rd-person-subject] \ Subject: 3p-group nominal-group plural-group
3p-group nominative

\ Subject: plural-group (:not wh-group)

[plural-subject]

Figure 7: A Linking Partial-Structure involving
Two Functions

L . . (:or declarative

[declarative] N Subject » Finite [wh-subject)

[wh-subject] “\ Subject * Finite I

* [imperative] \ -Subject T T
Subject

Finite

Figure 8: An Ordering Partial-Structure

which determine functional ordering are extracted
from the grammar (order, partition, insert and
presume), and used to produce a set of ordering
partial-structures. Each ordering partial-structure
represents the adjacency between two functions
(sometimes function-bundles), and the condition
under which that adjacency is allowed. two real-
isation statements which allow the order (realisa-
tions of features declarative and wh-subject), and
restricting the possibility of the Subject being pre-
sumed (the “*’is read as restriction of the realisa-
tion rule).

Insertion realisations may need to be incorpo-
rated also, since order and partition realisations
may contain optional elements. The insertion
statements are used to find the condition under
which an optional element is actually present or
absent in the structure. For a similar reason, pre-
sumption realisations are also involved. Confla-
tion statements may also be involved, since func-
tions are not always explicitly ordered — see fig-
ure 9.

Two important kinds of ordering partial-
structures involve the pseudo-functions Front and
End. The first kind shows which functions can

start a unit, and under what conditions. Figure 10

modal-clause

positive-clause

(:or declarative
wh-subject)

I I
Finite/Mod ModC

[modal-clause] \ Finite/Modal; Mod # Modc
* [negative-clause] \yFinite # Negator # Pred
*[yes-no] N Finite » Subject

Figure 9: An Ordering Partial-Structure Using
Conflation

nominal-group
(or proper-group
pronom-group
(:and common-group nondeixis
nonnumerated noneptitheted
nonclassified))

Front Thing

[nominal-group] N\ Front # Thing
[common-group] N\
(Deictic) » (Numerative) * (Epithet)

A (Classifier) » Thing

#[deixis] N\ +Deictic

* [numerated]\, +Numerative

* [eptitheted] v +Epithet

* [classified] “+Classifier

Figure 10: A Partial-Structure Ordering Thing at
the Front of a Group

. . nominal-group
) [nom]l}al—group] N Th]ng # End . non-qualified
* [qualified] Thing ~ Qualifier (:or nominative accusative)

* [genitive-nominal-group]
N Genitive-Marker A\End 7 ...

Thing Fnd

Figure 11: A Partial-Structure Ordering Thing at
the End of a Group

shows a partial-structure which includes the con-
ditions under which the Thing function can occur
as the first element of a nominal-group.

The second kind shows the condition under
which a unit can end a structure. For instance,
figure 11 shows the partial-structure which allows
the Thing function to be the final element in a
nominal-group.

4.3 Summary of the Compiled

Grammar

The
lexico-grammatical resources are re-represented as
three sets of partial-structures, lexical partial-
structures, linking partial-structures and ordering
partial-structures. It is these partial-structures
which are used for parsing, not the uncompiled re-
sources. The parsing-grammar represents a chunk-
ing of the realisation rules of the grammar into
larger groupings of information. This results in an
overall lower level of complexity in the grammar
actually used for parsing. O’Donnell 1993 provides
more detail on this issue.

This parsing-grammar is logically equivalent to
the Systemic grammar it is derived from - no infor-
mation is lost or added in the compilation process.

5 Compiling Out the Parsing
Grammar
This section outlines how two of the partial-

structures — linking partial-structures and order-
ing partial-structures — are compiled out of the

Figure 12: A partial Systemic network

generation grammar.

I will show the re-compilation in terms of a
staged series of re-expressions of the canonical
(Systemic) form of the grammatical resources,
ending in the partial-structure representation.

5.1 The Canonical Form

Figure 12 shows a system network for a simple
grammar of English. It includes 11 systems, rep-
resenting various grammatical distinctions, for in-
stance, between clause and word, between transi-
tive and intransitive clauses, or between nomina-
tive and accusative pronouns.

Types of the system network are associated
with structural realisations — the structural con-
sequence of the type. Figure 13 shows the realisa-
tions of the types in Figure 12.

This grammar deals mainly with some systems
involving the Subject and Object, what types of
units fill these roles, and how these roles conflate
with two other roles: Actor and Actee. The gram-
mar assumes that both roles are filled by pronouns,
which are either [nominative] or [accusative], [sin-
gular] or [plural], and [human] (e.g., “I”, “you”,
“he”) or [nonhuman] (e.g., “it”, “that”). Only [hu-
man] pronouns can fill the Actor role of a clause.

5.2 Logical Expression of the Gram-
mar

For the purposes of the expansion of this grammar,
we re-express it in a logical formalism. Figure 14
shows Logical Form I of this grammar, containing
both the logicical organisation of the system net-

clause: Subject: nominative
Actor: human
Finite: finiteverb
Pred: lexical-verb
declarative: Subject"Finite
Finite " Subject
Object: accusative
Actee = []
Pred...0Object
Subject/Actor
Object/Actee
Finite/Pred
Subject/Actee
Object/Actor

Pass: be-aux
AgentM = "by"
Finite/Pass

Pred: en-verb

yes-no:
transitive:

active:

passive:

Pass”Pred
AgentM~0Object
Subject/Actor
Finite/Pred
Subject: singular
Subject: plural

intransitive:

single-subj:
plural-subj:

Figure 13: Realisation Rules

work, and also (separately) the realisational con-
sequences of each feature. Note that :xor indicates
exclusive disjunction.

Since these two components are used distinctly,
we will ignore the type-logic components in future
expressions.

5.3 Compiling Linking Partial

Structures

A linking partial-structure (LPS) represents a con-
stituency relationship between a parent item and
a constituent. It links the parent, represented by a
feature-bundle, to the child,also represented by a
feature-bundle, via a function (or function-bundle)
— the constituency relation. In parsing, an LPS is
used to assign a function to a completed grammat-
ical unit.

We now need to extract out a sub-grammar of
LPSs for use in parsing. The following outlines
the steps of this process.

5.3.1 Extracting the relevant description

For the function-assignment process, we do not
need all of the role logic description. We can select
out only those rules involving preselection, lexify,
and conflation. See Logical Form II in Figure 15.

(:and
;1. Type Logic Component
(:xor (:and clause
(:xor declarative yes-no)
(:xor (:and transitive (:xor active passive))
intransitive)
(:xor single-subject plural-subject))
(:and word
(:xor (:and pronoun (:xor nominative accusative)
(:xor singular plural)
(:xor human nonhuman))
(:and verb ...))))

;2. Role Logic Component
(:and (:implies clause (:and Subject: nominative
Actor: human
Finite: finite-verb
Pred: lexical-verb))
(:implies declarative Subject Finite)
(:implies yes-no Finite“Subject)
(:implies transitive (:and Object: accusative
Actee: []
Pred...0Object))
(:implies active (:and Subject/Actor
Object/Actee
Finite/Pred))
(:implies passive (:and Subject/Actee
Object/Actor
Pass: be-aux
AgentM= "by"
Pred: en-verb
Finite/Pass
Pass Pred)
AgentM~0Object))
(:implies intransitive (:and Subject/Actor
Fin/Pred))
(:implies single-subject Subject: singular)
(:implies plural-subject Subject: plural)))

Figure 14: Logical Form I of the Grammar

(:and (:implies clause
(:and Subject: nominative
Actor: human
Finite: finite-verb
Pred: lexical-verb))
(:implies transitive
Object: accusative)
(:implies active
(:and Subject/Actor
Object/Actee
Finite/Pred))
(:implies passive
(:and Subject/Actee
Object/Actor
Pass: be-aux
AgentM= "by"
Pred: en-verb
Finite/Pass))
(:implies intransitive
(:and Subject/Actor
Fin/Pred))
(:implies single-subject
Subject: singular)
(:implies plural-subject
Subject: plural)))

Figure 15: Logical Form II: The Function Assign-
ment Sub-Description

5.3.2 Implications Out

We next put this description into a form more
suitable for expansion to Disjoint-Normal Form
(DNF). Note that implication can be re-expressed
using disjunction, conjunction and negation:

(:implies a b) is-equivalent-to
(:xor (:and a b) (:not a))

Using this rule, we can re-express the logical form
IT as Logical Form III, as shown in Figure 16.

5.3.3 Expansion to DNF

Simple algorithms exist to expand Logical Form
IIT into DNF. A small part of the result appears
in Logical Form IV of the grammar, shown in Fig-
ure 17.

The order of worst-case complexity of the ex-
pansion to DNF is easily calculated — it 1s simply
two to the power of the number of disjunctions,
which is equal to the number of types which have
realisation rules of type conflation, insertion, or
preselection.

By opting to expand only subsets of the whole
grammar, we have reduced the complexity of
the description, since the size of n for this sub-
description is smaller than for the whole descrip-
tion. However, for a real-sized grammar such as
NIGEL, the size of n 1s still large.

(:and (:xor (:and clause
Subject: nominative
Actor: human
Finite: finite-verb
Pred: lexical-verb)
(:not clause))

(:xor (:and transitive

Object: accusative)
(:not transitive))

(:xor (:and active
Subject/Actor
Object/Actee
Finite/Pred))

(:not active))

(:xor (:and passive
Subject/Actee
Object/Actor
Pass: be-aux
AgentM: "by"

Pred: en-verb
Finite/Pass)
(:not passive))

(:xor (:and intransitive
Subject/Actor
Fin/Pred)

(:not intransitive))

(:xor (:and single-subject
Subject: singular)

(:not single-subject))

(:xor (:and plural-subject

Subject: plural)))
(:not plural-subject)))

Figure 16: Logical Form Form III: After Implica-
tions Out

5.3.4 Re-expression in terms of Function
Bundles

From the DNF-form of this description, we can
extract out partial-descriptions for each function
bundle.
terms of the type constraints on each function-
bundle, including both the constraint on the
type of unit the function-bundle can be part

We now re-express this logical form in

of (the ‘parent-constraint’), and the constraint
on the filler of the function-bundle (the ‘filler-
constraint’). We show this as a set of triplets,
of the form:

(<parent-types>
<function-bundle>
<child-types>)

1. ((:and clause transitive
active single-subject)
Subject/Actor
(:and nominative human singular)))

2. ((:and clause transitive
active single-subject)

(:xor
(:and clause transitive active
single-subject
Subject/Actor: (:and nominative
human singular)
Object/Actee: accusative
Finite/Pred: (:and verb finite-verb
lexical-verb))
(:and clause transitive
active plural-subject
Subject/Actor: (:and nominative
human plural)
Object/Actee: accusative
Finite/Pred: (:and verb finite-verb
lexical-verb))
etc...

Figure 17: Logical Form Form IV: The Function
Assignment Sub-Description in DNF

Object/Actee
accusative)))

3. ((:and clause transitive
active plural-subject)
Subject/Actor
(:and nominative human plural)

4. ((:and clause transitive
active plural-subject)
Object/Actee
accusative)

5. ((:and clause transitive
active singular-subject
Finite/Pred
(:and verb finite-verb lexical-verb))
etc....

This representation can now be used to assign
function-bundles A unit can take on a function-
bundle if it can unify with the filler-constraint on
the function-bundle.

For the started with, 7he”,
with types: (:and pronoun nominative human
singular), only one triplet would unify. We could
thus posit structure for our unit:

Instance we

[clause:transitive:active:single-subject]
el __ | __ e
I
Subject/Actor
I
[pronoun:nominative:human:singular]

I
"he

Note that we have also gained information
about the types of the parent-unit of which the
unit is a constituent.

5.3.5 Reducing the number of Rules

Note that there is another simplification we can
make to the triplet list. We can take all triplets
with identical function bundle and child-type spec-
ification, and join them. The parent-types slot is
replaced with the disjunction of the two parent-
type slots. Thus, elements 2 and 4 above become
a single item. This process reduces the number of
rules to apply:

2,4. ((:and clause transitive active)
Object/Actee
accusative)))

5.4 Compiling Order Partial Struc-
tures

Another process we use in parsing involves the pre-
diction of what function-bundles can come next in
a partially completed structure. With a systemic
grammar, this process requires:

e Ordering and Partition rules: to see which
function can come next.

e Conflation rules: to see which functions can
conflate with the function predicted to come
next,.

e The type logic: to show which of these order-
ing, partition and conflation rules are system-
ically compatible.

The processing of this sub-description, and
any others, is exactly the same as for function-
assignment.

1. Extract from the role logic description the rel-
evant realisation rules;

2. Replace implications with disjunction and
negation;

3. Expand out the grammar;

4. Index the rules in a form useful for the pro-
cessing.

6 Parsing with the Parsing
Grammar

It remains to be shown how these partial-
structures are put together during parsing. The
general strategy for parsing in WAG is bottom-up,
breadth-first, left-to-right parsing, using a chart
mechanism. I will briefly demonstrate the joining
together of partial-structures which occurs during
parsing.

6.1 Lexification

A sentence is analysed one word at a time, from
left to right. Lexical analysis involves the produc-
tion of a set of candidate lexical partial-structures
for the word. For instance, the lexification of a
word “they” would result in a single candidate
partial-structure, as was shown in figure 5.

Each of the candidates then needs to be incor-
porated into the parse-chart. Incorporation is per-
formed through three steps described below: func-
tion assignment, structural placement, and com-
pletion.

6.2 Function Assignment

The first step to incorporate of a lexical partial-
structure an analysis involves discovering what
constituency functions the unit can fill. To do this,
we attempt to unify the lexical partial-structure
with each of the linking partial-structures in the
parsing grammar, to see which are compatible.®
Figure 18 shows the lexical partial-structure
from above unifying with one of the linking
partial-structures, producing a group-level partial-
analysis of the pronoun.

6.3 Structural Placement

This function-assigned partial-structure has re-
sulted from the analysis of a single word in iso-
lation. We now need to relate it to any existing
structure which resulted from analysis of words to
the left of the current word (extending incomplete-
edges in the chart).

Assuming that “they” was at the beginning of a
sentence, there is no structure so far. We do need
however to hypothesise this as the first element in
a unit. For this we look for an ordering partial-
structure which allows a Front ~ Thing ordering,
and attempt to unify it with the analysis of “they”
from the prior step. Figure 19 shows the result
of this unification, an analysis spanning the first
word of the sentence. The same operation is used
to place successive constituents of each unit.

6.4 Completing a Unit

After each structural placement, we need to test
if the extended analysis can be considered a com-
pleted analysis. To do this, we look for an or-
dering partial-structure which allows End to be
the next element. If it unifies with the partial-
structure, then the result is a completed-structure
(a fully specified analysis of a grammatical unit).

81n practice, various methods are used to limit the num-
ber of linking partial-structures actually matched against
the lexical partial-structure.

10

Figure 20 shows such a unification: the partial-
structure produced in the last stage unifies with
the linking partial-structure for Thing ~ End, re-
sulting in a complete analysis of a nominal-group.

The completion of the nominal-group 1s only
one of the structural possibilities. The incomplete
edge also remains in the chart, perhaps to be ex-
tended by later occurring items, e.g., waiting for

a Qualifier (e.g., “they who died”).

6.5 Recursion of these Steps

When a ‘completed-structure’ is recognised, we
then need to repeat the function- assignment,
structural placement and completion steps for this
structure. When no more function-assignments
can take place, the processor advances to the next
word. When the last word is handled, the parser
returns any completed structure which spans the
sentence as a whole.

7 Summary & Conclusions

This research has resulted in system which
parses using a large Hallidayan-formalism Sys-
temic grammar, without pre-parsing with a non-
Systemic grammar, or simplifying the formalism.
The WAG parser is the first parser to fit these
conditions.

The major factor which makes this possible is
the re-representation of the Systemic grammar in
a form more suitable for bottom-up parsing. The
type of re-representation is important. The re-
representation I have developed allows efficient
parsing, because it provides the answer to two
questions which a bottom-up Systemic parser asks:

e What element can come next;

e What is the function-potential of a given unit.

The parsing-grammar i1s automatically compiled
(no modification by hand is required), and thus
can be derived from the grammar used for gener-
ation.

application.

approach. This means that the grammar can be
modified - or without re-programming the system.

In regards to efficiency, the WAG parser is able
to handle grammars of a reasonable size, while still
producing results in a reasonable time. For in-
stance, using a version of the Nigel grammar with
500 clause- and group- (phrase) rank features, the
precompilation takes approximately 2 minutes us-
ing Sun Common Lisp on a Sun Sparc II. A sen-
tence such as “A user-password 1s a character
string consisting of a maximum of eight alpha-
numeric characters.” is then analysed in 15 sec-
ond. With a smaller Systemic grammar developed

pronom-group pronom-group

nominative nominative
3p-group 3p-group
plural-group j plural-group
word: pronoun: _|_ """ I
plural-pronoun: Thing Thing
nominative-pronoun: pronoun: nominative-pronoun word: pronoun:
definite-pronoun: noninteractant-pronoun plural-pronoun:
noninteractant-pronoun: plural-pronoun nominative-pronoun:

personal-pronoun definite-pronoun:
noninteractant-pronoun:
| personal-pronoun

Spellling |
Spelli
"they" peliing
1" they "

Figure 18: The Function-Assignment Operation

nominal-group

(or proper-group nominal-group
pronom-group o ronom-erou pronom-group
(:and common-group nondeixis | . pronom-group nominative

nonnumerated noneptitheted ngmmatlve = 3p-group
nonclassified)) p-group plural-group
plural-group
Front Thing T(;hing W()Trgipr}gnoun
word: pronoun:
plgral—grgngtm: plural-pronoun
nominative-pronoun: “%‘;‘;;:ﬁ:g’g;g{g’lﬁ:"l
definite-pronoun: 5 3
noninteractant-pronoun: noninteractant-pronoun
personal-pronoun personal-pronoun
|
| .
Spelling Spelling
— "they"
they y

Figure 19: Placing a Partial-Structure at the Beginning of a Unit

pronom-group pronom-group
n;)mmntnve non-qualified n(;m_mra;:lve
Sp-group (:or nominative accusative) Sp-group

plural-group plural-group

| ﬁ non-qualified

| +

| | | I

Thing Thing End Thinfg

word: pronoun: plural-pronoun: word: pronoun: plural-pronoun:
nominative-pronoun: definite-pronoun: nominative-pronoun: definite-pronoun:
noninteractant-pronoun: personal-pronoun noninteractant-pronoun: personal-pronoun
| L
Spelling Spellllng

I

"they" they

Figure 20: ‘Completing’ a Partial-Structure

by the author, the same sentence is parsed in un-
der two seconds. These times compare favourably
to other Systemic parsers, using grammars of sim-
ilar coverage and complexity.

Acknowledgements

The parser discussed in this paper was partially
developed in the Electronic Discourse Analyser
project, funded by Fujitsu (Japan). Thanks also
to Cecile Paris abd Brigitte Grote whose insightful
comments have improved this paper.

Bibliography

Bateman, John 1989 “Grammar, Systemic 7, in Stuart
Shapiro (ed.), Encyclopedia of Artificial Intelligence,
Second Edition, New York: John Wiley & Sons, pp.
583 — 592.

Bateman, John — Martin Emele — Stefan Momma,
(1992) “The nondirectional representation of Systemic
Functional Grammars and Semantics as Typed Fea-
ture Structures” in Proceedings of COLING-92, Vol-
ume III, Nantes, France, 916-920.

Benson, James — William Greaves (eds.) 1985 Sys-
temic Perspectives on Discourse: Selected Theoretical

Papers from the 9th International Systemic Workshop,
Norwood, N.J.: Ablex.

Carpenter, Bob 1992 The Logic of Typed Feature
Structures, Cambridge University Press, Cambridge,
England.

Cummings, Michael — Al Regina (1985) “A PROLOG
parser-generator for Systemic analysis of Old English
Nominal Groups”, in Benson and Greaves, 1985.

Emele, Martin — Rémi Zajac 1990 “Typed Unification
Grammars”, in Proceedings of the 13th International
Conference on Computational Linguistics, COLING-
90, Helsinki, August 1990.

Fawcett, Robin P. 1980. Cognitive Linguistics and
Social Interaction: Towards an Integrated Model of a
Systemic Punctional Grammar and the other Compo-
nents of a Communicating Mind, Heidelberg: Julius
Groos Verlag, and Exeter: University of Exeter.

Fawcett, Robin P. — Gordon Tucker — Lin Yuen 1993
“How a Systemic-Functional Grammar Works 7, in
Helmut Horacek & Michael Zock (eds.) New Con-
cepts in Natural Language: Planning Realisation and
Systems, Pinter: London.

Halliday, M. A. K. (1985) Introduction to Functional
Grammar, London: Edward Arnold.

Hudson, R.A. (1971) FEnglish Complex Sentences,
North-Holland.

Kasper, Robert (1986) “Systemic Grammar and Func-

tional Unification Grammar” In Benson, J. and

Greaves, W., Selected Papers from the 12th Interna-
tional Systemics Workshop, Norwood, N.J: Ablex.

Kasper, Robert (1988a) “An Experimental Parser for
Systemic Grammars”, Proceedings of the 12th Int.
Conf. on Computational Linguistics, Budapest: As-
sociation for Computational Linguistics.

Kasper, Robert (1988b) “Parsing with Systemic
Grammar”, Technical Document, USC/Information
Sciences Institute.

Kasper, Robert (1989) “Unification and Classifica-
tion: An Experiment in Information-Based Parsing”,
in Proceedings of the International Workshop on Pars-
ing Technologies, pages 1-7, CMU, Pittsburgh.

Kasper, Robert (1990) “Performing Integrated Syn-
tactic and Semantic Parsing Using Classification”, pa-
per presented at Darpa Workshop on Speech and NL
Processing, Pittsburgh, June 1990.

Kay, Martin (1979) “Functional Grammar” in Proceed-
ings of the Fourth Annual Meeting of the Berkeley Lin-
gutstics Soctety.

Kay, Martin (1985) “Parsing In Functional Unifica-
tion Grammar” in Dowty D., L. Karttunen, and A.
Zwicky, (Eds): Natural Language Parsing, Cambridge
University Press, Cambridge, England.

Mann, William C. 1983 “An Overview of the Penman
Text Generation System ”, USC/ISI Technical Report
RR-84-127.

Mann, W. C. — C. I. M. Matthiessen (1985) “Demon-
stration of the Nigel Text Generation Computer Pro-
gram”, In Benson and Greaves, 1985.

Martin, James (1992) English Text: System and Struc-
ture, Amsterdam: Benjamins.

Matthiessen, Christian 1985 “The systemic framework
in text generation: Nigel 7, in Benson and Greaves,
1985.

Matthiessen, Christian — W. C. Mann (1985) “NIGEL:
a Systemic Grammar for Text Generation” in Benson
and Greaves, 1985

Matthiessen, Christian — Michael O’Donnell — Licheng
Zeng 1991 “Discourse Analysis and the Need for Func-
tionally Complex Grammars in Parsing”, in Proceed-
ings of the Second Japan-Australia Joint Symposium
on Natural Language Processing, October 2-5, 1991,
Kyushu Institute of Technology, lizuka City, Japan.

McCord, Michael (1977) Procedural Systemic Gram-
mars in Int. J. Man-Machine Studies, 9, 255-286, Lon-
don: Academic Press.

O’Donnell, Michael 1993 “Reducing Complexity in a
Systemic Parser 7, in Proceedings of the Third Inter-
national Workshop on Parsing Technologies, Tilburg,
the Netherlands, August 10-13, 1993.

O’Donnell, Michael 1994a Sentence Analysis and Gen-
eration - A Systemic Perspective, Ph.D. Thesis, De-
partment of Sydney, University of Sydney, Australia.

O’Donnell, Michael 1994b Workbench for Analysis and
Generation: User Manual, WAG System Documenta-
tion.

O’Donnell, Michael 1995 “Sentence Generation Using
the Systemic WorkBench”, in Proceedings of the Fifth
European Workshop on Natural Language Generation,
20-22 May, Leiden, The Netherlands, pp 235-238.

O’Donoghue, Tim F. (1991a) “The Vertical Strip
Parser: A lazy approach to parsing” Research Re-
port 91.15, School of Computer Studies, University of
Leeds, Leeds, UK.

O’Donoghue, Tim F. (1991b) “A Semantic Interpreter
for Systemic Grammars” in Proceedings of the ACL
Workshop on Reversible Grammars, University of Cal-
ifornia at Berkeley, June 1991.

Weerasinghe, A. Ruvan & Robin Fawcett 1993 “Prob-
abilistic Incremental Parsing in Systemic Functional
Grammar”, in Proceedings of the Third Interna-
tional Workshop on Parsing Technologies, Tilburg, the
Netherlands, August 10-13, 1993.

Winograd, Terry (1972) Understanding Natural Lan-
quage, New York: Academic Press.

13

